Core 1 β3Galactosyltransferase (C1GalT1, T-Synthase) and Its Specific Molecular Chaperone Cosmc (C1GalT1C1)

  • Tongzhong Ju
  • Richard D. Cummings
Reference work entry


Core 1 UDP-Gal: N-acetylgalactosaminyl-α1-O-Ser/Thr β3galactosyltransferase (core 1 β3galactosyltransferase, core 1 β3GalT, C1GALT1, T-synthase, EC transfers the Gal from UDP-Gal to N-acetylgalactosaminyl-α1-O-Ser/Thr (Tn antigen) in a protein to form Galβ1,3GalNAc-α-Ser/Thr, the core 1 structure also known as T antigen (Fig. 15.1) in the mucin-type O-glycosylation pathway. This core 1 structure is the most common precursor for a variety of complex structures of mucin-type O-glycans (O-glycans) usually found in many mucins, membrane glycoproteins, and secreted glycoproteins (Ju et al. 2011a). These O-glycans include mono- and di-sialyl core 1, sialyl Lewis x (SLeX) core 2 O-glycans with or without poly-N-acetyllactosamine structures, and extended core 1 O-glycans with sulfation such as sulfo-sialyl Lewis x (MECA79 epitope). The O-glycans on glycoproteins play important roles in immunity (Ellies et al. 1998; Homeister et al. 2001; Yeh et al. 2001), cell–cell interactions (selectins and their ligands) (Homeister et al. 2001; Leppanen et al. 1999; McEver et al. 1995; Wilkins et al. 1996; Yeh et al. 2001), vascular biology (Tenno et al. 2007), angiogenesis (Xia et al. 2004), lymphangiogenesis (Fu et al. 2008), and biogenesis and function of platelets (Wang et al. 2012). Biochemically and biologically, T-synthase is the key glycosyltransferase in the biosynthesis and biology of mucin-type O-glycan.


Jurkat Cell Zebra Fish Baculovirus Expression System Single Exon Gene Bovine Submaxillary Mucin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alexander WS, Viney EM, Zhang JG, Metcalf D, Kauppi M, Hyland CD, Carpinelli MR, Stevenson W, Croker BA, Hilton AA, Ellis S, Selan C, Nandurkar HH, Goodnow CC, Kile BT, Nicola NA, Roberts AW, Hilton DJ (2006) Thrombocytopenia and kidney disease in mice with a mutation in the C1galt1 gene. Proc Natl Acad Sci USA 103:16442–16447PubMedCentralPubMedCrossRefGoogle Scholar
  2. Allen AC, Topham PS, Harper SJ, Feehally J (1997) Leucocyte beta 1,3 galactosyltransferase activity in IgA nephropathy. Nephrol Dial Transplant 12:701–706PubMedCrossRefGoogle Scholar
  3. Aryal RP, Ju T, Cummings RD (2010) The endoplasmic reticulum chaperone Cosmc directly promotes in vitro folding of T-synthase. J Biol Chem 285:2456–2462PubMedCrossRefGoogle Scholar
  4. Aryal RP, Ju T, Cummings RD (2012) Tight complex formation between Cosmc chaperone and its specific client non-native T-synthase leads to enzyme activity and client-driven dissociation. J Biol Chem 287:15317–15329PubMedCrossRefGoogle Scholar
  5. Beerman I, Novak J, Wyatt RJ, Julian BA, Gharavi AG (2007) The genetics of IgA nephropathy. Nat Clin Pract Nephrol 3:325–338PubMedCrossRefGoogle Scholar
  6. Berger EG (1999) Tn-syndrome. Biochim Biophys Acta 1455:255–268PubMedCrossRefGoogle Scholar
  7. Berger J, Hinglais N (1968) Intercapillary deposits of IgA-IgG. J Urol Nephrol (Paris) 74:694–695Google Scholar
  8. Brockhausen I, Moller G, Pollex-Kruger A, Rutz V, Paulsen H, Matta KL (1992a) Control of O-glycan synthesis: specificity and inhibition of O-glycan core 1 UDP-galactose:N-acetylgalactosamine-alpha-R beta 3-galactosyltransferase from rat liver. Biochem Cell Biol = Biochim Biol Cell 70:99–108CrossRefGoogle Scholar
  9. Brockhausen I, Moller G, Pollex-Kruger A, Rutz V, Paulsen H, Matta KL (1992b) Control of O-glycan synthesis: specificity and inhibition of O-glycan core 1 UDP-galactose:N-acetylgalactosamine-alpha-R beta 3-galactosyltransferase from rat liver. Biochem Cell Biol 70:99–108PubMedCrossRefGoogle Scholar
  10. Crew VK, Singleton BK, Green C, Parsons SF, Daniels G, Anstee DJ (2008) New mutations in C1GALT1C1 in individuals with Tn positive phenotype. Br J Haematol 142:657–667PubMedCrossRefGoogle Scholar
  11. D’Amico G (2000) Natural history of idiopathic IgA nephropathy: role of clinical and histological prognostic factors. Am J Kidney Dis 36:227–237PubMedCrossRefGoogle Scholar
  12. Desai PR (2000) Immunoreactive T and Tn antigens in malignancy: role in carcinoma diagnosis, prognosis, and immunotherapy. Transfus Med Rev 14:312–325PubMedCrossRefGoogle Scholar
  13. Ellies LG, Tsuboi S, Petryniak B, Lowe JB, Fukuda M, Marth JD (1998) Core 2 oligosaccharide biosynthesis distinguishes between selectin ligands essential for leukocyte homing and inflammation. Immunity 9:881–890PubMedCrossRefGoogle Scholar
  14. Friedenreich V (1930) The Thomsen hemagglutination phenomenon, vol 1, Levin and Munskgaard, CopenhagenGoogle Scholar
  15. Fu J, Gerhardt H, McDaniel JM, Xia B, Liu X, Ivanciu L, Ny A, Hermans K, Silasi-Mansat R, McGee S, Nye E, Ju T, Ramirez MI, Carmeliet P, Cummings RD, Lupu F, Xia L (2008) Endothelial cell O-glycan deficiency causes blood/lymphatic misconnections and consequent fatty liver disease in mice. J Clin Invest 118:3725–3737PubMedCentralPubMedCrossRefGoogle Scholar
  16. Fu J, Wei B, Wen T, Johansson ME, Liu X, Bradford E, Thomsson KA, McGee S, Mansour L, Tong M, McDaniel JM, Sferra TJ, Turner JR, Chen H, Hansson GC, Braun J, Xia L (2011) Loss of intestinal core 1-derived O-glycans causes spontaneous colitis in mice. J Clin Invest 121:1657–1666PubMedCentralPubMedCrossRefGoogle Scholar
  17. Furukawa K, Roth S (1985) Co-purification of galactosyltransferases from chick-embryo liver. Biochem J 227:573–582PubMedGoogle Scholar
  18. Giannakakis K, Feriozzi S, Perez M, Faraggiana T, Muda AO (2007) Aberrantly glycosylated IgA1 in glomerular immune deposits of IgA nephropathy. J Am Soc Nephrol 18:3139–3146PubMedCrossRefGoogle Scholar
  19. Gouyer V, Leteurtre E, Zanetta JP, Lesuffleur T, Delannoy P, Huet G (2001) Inhibition of the glycosylation and alteration in the intracellular trafficking of mucins and other glycoproteins by GalNAcalpha-O-bn in mucosal cell lines: an effect mediated through the intracellular synthesis of complex GalNAcalpha-O-bn oligosaccharides. Front Biosci: J Virtual Libr 6:D1235–D1244CrossRefGoogle Scholar
  20. Hiki Y (2009) O-linked oligosaccharides of the IgA1 hinge region: roles of its aberrant structure in the occurrence and/or progression of IgA nephropathy. Clin Exp Nephrol 13:415–423PubMedCrossRefGoogle Scholar
  21. Homeister JW, Thall AD, Petryniak B, Maly P, Rogers CE, Smith PL, Kelly RJ, Gersten KM, Askari SW, Cheng G, Smithson G, Marks RM, Misra AK, Hindsgaul O, von Andrian UH, Lowe JB (2001) The alpha (1,3) fucosyltransferases FucT-IV and FucT-VII exert collaborative control over selectin-dependent leukocyte recruitment and lymphocyte homing. Immunity 15:115–126PubMedCrossRefGoogle Scholar
  22. Huang J, Byrd JC, Yoon WH, Kim YS (1992) Effect of benzyl-alpha-GalNAc, an inhibitor of mucin glycosylation, on cancer-associated antigens in human colon cancer cells. Oncol Res 4:507–515PubMedGoogle Scholar
  23. Inoue M, Ton SM, Ogawa H, Tanizawa O (1991) Expression of Tn and sialyl-Tn antigens in tumor tissues of the ovary. Am J Clin Pathol 96:711–716PubMedGoogle Scholar
  24. Inoue S, Sano H, Ohta M (2000) Growth suppression of Escherichia coli by induction of expression of mammalian genes with transmembrane or ATPase domains. Biochem Biophys Res Commun 268:553–561PubMedCrossRefGoogle Scholar
  25. Inoue T, Sugiyama H, Hiki Y, Takiue K, Morinaga H, Kitagawa M, Maeshima Y, Fukushima K, Nishizaki K, Akagi H, Narimatsu Y, Narimatsu H, Makino H (2010) Differential expression of glycogenes in tonsillar B lymphocytes in association with proteinuria and renal dysfunction in IgA nephropathy. Clin Immunol 136:447–455PubMedCrossRefGoogle Scholar
  26. Itzkowitz S (1992) Carbohydrate changes in colon carcinoma. APMIS Suppl 27:173–180PubMedGoogle Scholar
  27. Itzkowitz S, Kjeldsen T, Friera A, Hakomori S, Yang US, Kim YS (1991) Expression of Tn, sialosyl Tn, and T antigens in human pancreas. Gastroenterology 100:1691–1700PubMedGoogle Scholar
  28. Ju T, Cummings RD (2002) A unique molecular chaperone Cosmc required for activity of the mammalian core 1 beta 3-galactosyltransferase. Proc Natl Acad Sci USA 99:16613–16618PubMedCentralPubMedCrossRefGoogle Scholar
  29. Ju T, Cummings RD (2005) Protein glycosylation: chaperone mutation in Tn syndrome. Nature 437:1252PubMedCrossRefGoogle Scholar
  30. Ju T, Cummings RD (2010) Functional assays for the molecular chaperone cosmc. Methods Enzymol 479:107–122PubMedCrossRefGoogle Scholar
  31. Ju T, Cummings RD, Canfield WM (2002a) Purification, characterization, and subunit structure of rat core 1 Beta1,3-galactosyltransferase. J Biol Chem 277:169–177PubMedCrossRefGoogle Scholar
  32. Ju T, Brewer K, D’Souza A, Cummings RD, Canfield WM (2002b) Cloning and expression of human core 1 beta1,3-galactosyltransferase. J Biol Chem 277:178–186PubMedCrossRefGoogle Scholar
  33. Ju T, Zheng Q, Cummings RD (2006) Identification of core 1 O-glycan T-synthase from caenorhabditis elegans. Glycobiology 16:947–958PubMedCrossRefGoogle Scholar
  34. Ju T, Aryal RP, Stowell CJ, Cummings RD (2008a) Regulation of protein O-glycosylation by the endoplasmic reticulum-localized molecular chaperone Cosmc. J Cell Biol 182:531–542PubMedCrossRefGoogle Scholar
  35. Ju T, Lanneau GS, Gautam T, Wang Y, Xia B, Stowell SR, Willard MT, Wang W, Xia JY, Zuna RE, Laszik Z, Benbrook DM, Hanigan MH, Cummings RD (2008b) Human tumor antigens Tn and sialyl Tn arise from mutations in Cosmc. Cancer Res 68:1636–1646PubMedCrossRefGoogle Scholar
  36. Ju T, Otto VI, Cummings RD (2011a) The Tn antigen-structural simplicity and biological complexity. Angewandte Chemie 50:1770–1791PubMedCrossRefGoogle Scholar
  37. Ju T, Xia B, Aryal RP, Wang W, Wang Y, Ding X, Mi R, He M, Cummings RD (2011b) A novel fluorescent assay for T-synthase activity. Glycobiology 21:352–362PubMedCrossRefGoogle Scholar
  38. Julian BA, Novak J (2004) IgA nephropathy: an update. Curr Opin Nephrol Hypertens 13:171–179PubMedCrossRefGoogle Scholar
  39. Klenk E, Uhlenbruck G (1960) On the isolation of mucoids containing neuraminic acid from human erythrocyte stroma, a contribution to the chemistry of agglutinogens. Hoppe Seylers Z Physiol Chem 319:151–160PubMedCrossRefGoogle Scholar
  40. Kudo T, Iwai T, Kubota T, Iwasaki H, Takayma Y, Hiruma T, Inaba N, Zhang Y, Gotoh M, Togayachi A, Narimatsu H (2002) Molecular cloning and characterization of a novel UDP-Gal: GalNAc (alpha) peptide beta 1,3-galactosyltransferase (C1Gal-T2), an enzyme synthesizing a core 1 structure of O-glycan. J Biol Chem 277:47724–47731PubMedCrossRefGoogle Scholar
  41. Kudo T, Iwai T, Kubota T, Iwasaki H, Takayma Y, Hiruma T, Inaba N, Zhang Y, Gotoh M, Togayachi A, Narimatsu H (2006) Molecular cloning and characterization of a novel UDP-Gal: GalNAcα peptide β1,3-galactosyltransferase (C1Gal-T2), an enzyme synthesizing a core 1 structure of O-glycan. J Biol Chem 277:47724–47731. J Biol Chem, 281:24999CrossRefGoogle Scholar
  42. Leppanen A, Mehta P, Ouyang YB, Ju T, Helin J, Moore KL, van Die I, Canfield WM, McEver RP, Cummings RD (1999) A novel glycosulfopeptide binds to P-selectin and inhibits leukocyte adhesion to P-selectin. J Biol Chem 274:24838–24848PubMedCrossRefGoogle Scholar
  43. Levy M, Berger J (1988) Worldwide perspective of IgA nephropathy. Am J Kidney Dis 12:340–347PubMedGoogle Scholar
  44. Li GS, Zhang H, Lv JC, Shen Y, Wang HY (2007) Variants of C1GALT1 gene are associated with the genetic susceptibility to IgA nephropathy. Kidney Int 71:448–453PubMedCrossRefGoogle Scholar
  45. Lin YR, Reddy BV, Irvine KD (2008) Requirement for a core 1 galactosyltransferase in the Drosophila nervous system. Dev Dyn 237:3703–3714PubMedCentralPubMedCrossRefGoogle Scholar
  46. Lundstrom M, Jeansson S, Olofsson S (1987) Host cell-induced differences in the O-glycosylation of herpes simplex virus gC-1. II. Demonstration of cell-specific galactosyltransferase essential for formation of O-linked oligosaccharides. Virology 161:395–402PubMedCrossRefGoogle Scholar
  47. Malycha F, Eggermann T, Hristov M, Schena FP, Mertens PR, Zerres K, Floege J, Eitner F (2009) No evidence for a role of cosmc-chaperone mutations in European IgA nephropathy patients. Nephrol Dial Transplant 24:321–324PubMedCrossRefGoogle Scholar
  48. Mattu TS, Pleass RJ, Willis AC, Kilian M, Wormald MR, Lellouch AC, Rudd PM, Woof JM, Dwek RA (1998) The glycosylation and structure of human serum IgA1, Fab, and Fc regions and the role of N-glycosylation on Fc alpha receptor interactions. J Biol Chem 273:2260–2272PubMedCrossRefGoogle Scholar
  49. McEver RP, Moore KL, Cummings RD (1995) Leukocyte trafficking mediated by selectin-carbohydrate interactions. J Biol Chem 270:11025–11028PubMedCrossRefGoogle Scholar
  50. Mendicino J, Sivakami S, Davila M, Chandrasekaran EV (1982) Purification and properties of UDP-gal: N-acetylgalactosaminide mucin: beta 1,3-galactosyltransferase from swine trachea mucosa. J Biol Chem 257:3987–3994PubMedGoogle Scholar
  51. Mestecky J, Tomana M, Moldoveanu Z, Julian BA, Suzuki H, Matousovic K, Renfrow MB, Novak L, Wyatt RJ, Novak J (2008) Role of aberrant glycosylation of IgA1 molecules in the pathogenesis of IgA nephropathy. Kidney Blood Press Res 31:29–37PubMedCrossRefGoogle Scholar
  52. Mestecky J, Raska M, Julian BA, Gharavi AG, Renfrow MB, Moldoveanu Z, Novak L, Matousovic K, Novak J (2013) IgA nephropathy: molecular mechanisms of the disease. Annu Rev Pathol 24:217–240Google Scholar
  53. Mi R, Song L, Wang Y, Ding X, Zeng J, Lehoux S, Aryal RP, Wang J, Crew VK, van Die I, Chapman AB, Cummings RD, Ju T (2012) Epigenetic silencing of Cosmc in human leukocytes expressing Tn antigen. J Biol Chem 287:41523–41533PubMedCrossRefGoogle Scholar
  54. Moreau R, Dausset J, Bernard J, Moullec J (1957) Acquired hemolytic anemia with polyagglutinability of erythrocytes by a new factor present in normal blood. Bull Mem Soc Med Hop Paris 73:569–587PubMedGoogle Scholar
  55. Muller R, Hulsmeier AJ, Altmann F, Ten Hagen K, Tiemeyer M, Hennet T (2005) Characterization of mucin-type core-1 beta1-3 galactosyltransferase homologous enzymes in Drosophila melanogaster. FEBS J 272:4295–4305PubMedCrossRefGoogle Scholar
  56. Novak J, Julian BA, Tomana M, Mestecky J (2008) IgA glycosylation and IgA immune complexes in the pathogenesis of IgA nephropathy. Semin Nephrol 28:78–87PubMedCentralPubMedCrossRefGoogle Scholar
  57. Palaima E, Leymarie N, Stroud D, Mizanur RM, Hodgkin J, Gravato-Nobre MJ, Costello CE, Cipollo JF (2010) The Caenorhabditis elegans bus-2 mutant reveals a new class of O-glycans affecting bacterial resistance. J Biol Chem 285:17662–17672PubMedCrossRefGoogle Scholar
  58. Piller V, Piller F, Fukuda M (1990) Biosynthesis of truncated O-glycans in the T cell line Jurkat. Localization of O-glycan initiation. J Biol Chem 265:9264–9271PubMedGoogle Scholar
  59. Pirulli D, Crovella S, Ulivi S, Zadro C, Bertok S, Rendine S, Scolari F, Foramitti M, Ravani P, Roccatello D, Savoldi S, Cerullo G, Lanzilotta SG, Bisceglia L, Zelante L, Floege J, Alexopoulos E, Kirmizis D, Ghiggeri GM, Frasca G, Schena FP, Amoroso A (2009) Genetic variant of C1GalT1 contributes to the susceptibility to IgA nephropathy. J Nephrol 22:152–159PubMedGoogle Scholar
  60. Prokop O, Uhlenbruck G (1969) N-acetyl-d-galactosamine in tumor cell membranes: demonstration by means of Helix agglutinins. Med Welt 46:2515–2519PubMedGoogle Scholar
  61. Qin W, Zhou Q, Yang LC, Li Z, Su BH, Luo H, Fan JM (2005) Peripheral B lymphocyte beta 1,3-galactosyltransferase and chaperone expression in immunoglobulin A nephropathy. J Int Med 258:467–477CrossRefGoogle Scholar
  62. Qin W, Zhong X, Fan JM, Zhang YJ, Liu XR, Ma XY (2008) External suppression causes the low expression of the Cosmc gene in IgA nephropathy. Nephrol Dial Transplant 23:1608–1614PubMedCrossRefGoogle Scholar
  63. Schachter H, McGuire EJ, Roseman S (1971) Sialic acids. 13. A uridine diphosphate d-galactose: mucin galactosyltransferase from porcine submaxillary gland. J Biol Chem 246:5321–5328PubMedGoogle Scholar
  64. Schietinger A, Philip M, Yoshida BA, Azadi P, Liu H, Meredith SC, Schreiber H (2006) A mutant chaperone converts a wild-type protein into a tumor-specific antigen. Science 314:304–308PubMedCrossRefGoogle Scholar
  65. Schjoldager KT, Vakhrushev SY, Kong Y, Steentoft C, Nudelman AS, Pedersen NB, Wandall HH, Mandel U, Bennett EP, Levery SB, Clausen H (2012) Probing isoform-specific functions of polypeptide GalNAc-transferases using zinc finger nuclease glycoengineered SimpleCells. Proc Natl Acad Sci USA 109:9893–9898PubMedCentralPubMedCrossRefGoogle Scholar
  66. Springer GF (1984) T and Tn, general carcinoma autoantigens. Science 224:1198–1206PubMedCrossRefGoogle Scholar
  67. Springer GF (1997) Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis, and immunotherapy. J Mol Med 75:594–602PubMedCrossRefGoogle Scholar
  68. Steentoft C, Vakhrushev SY, Vester-Christensen MB, Schjoldager KT, Kong Y, Bennett EP, Mandel U, Wandall H, Levery SB, Clausen H (2011) Mining the O-glycoproteome using zinc-finger nuclease-glycoengineered simple cell lines. Nat Methods 8:977–982PubMedCrossRefGoogle Scholar
  69. Stojanovic D, Vischer P, Hughes RC (1984) Glycosyl transferases of baby hamster kidney cells and ricin-resistant mutants. O-glycan biosynthesis. Eur J Biochem 138:551–562PubMedCrossRefGoogle Scholar
  70. Sun Q, Ju T, Cummings RD (2011) The transmembrane domain of the molecular chaperone Cosmc directs its localization to the endoplasmic reticulum. J Biol Chem 286:11529–11542PubMedCrossRefGoogle Scholar
  71. Suzuki H, Moldoveanu Z, Hall S, Brown R, Vu HL, Novak L, Julian BA, Tomana M, Wyatt RJ, Edberg JC, Alarcon GS, Kimberly RP, Tomino Y, Mestecky J, Novak J (2008) IgA1-secreting cell lines from patients with IgA nephropathy produce aberrantly glycosylated IgA1. J Clin Invest 118:629–639PubMedCentralPubMedGoogle Scholar
  72. Tenno M, Ohtsubo K, Hagen FK, Ditto D, Zarbock A, Schaerli P, von Andrian UH, Ley K, Le D, Tabak LA, Marth JD (2007) Initiation of protein O glycosylation by the polypeptide GalNAcT-1 in vascular biology and humoral immunity. Mol Cell Biol 27:8783–8796PubMedCentralPubMedCrossRefGoogle Scholar
  73. Terasawa K, Furumoto H, Kamada M, Aono T (1996) Expression of Tn and sialyl-Tn antigens in the neoplastic transformation of uterine cervical epithelial cells. Cancer Res 56:2229–2232PubMedGoogle Scholar
  74. Thomsen O (1927) Ein vermehrungsfahiges Agens als Veranderer des isoagglutinatorischen Verhaltens der roten Blutkorperchen, eine bisher unbekannte Quelle der Fehlbestimmung. Z Immunitatsforsch Exp Ther 52:85–107Google Scholar
  75. Thurnher M, Clausen H, Fierz W, Lanzavecchia A, Berger EG (1992) T cell clones with normal or defective O-galactosylation from a patient with permanent mixed-field polyagglutinability. Eur J Immunol 22:1835–1842PubMedCrossRefGoogle Scholar
  76. Tsuchiya A, Kanno M, Kawaguchi T, Endo Y, Zhang GJ, Ohtake T, Kimijima II (1999) Prognostic relevance of Tn expression in breast cancer. Breast Cancer 6:175–180PubMedCrossRefGoogle Scholar
  77. Tsuji T, Osawa T (1986) Carbohydrate structures of bovine submaxillary mucin. Carbohydr Res 151:391–402PubMedCrossRefGoogle Scholar
  78. Wang Y, Ju T, Ding X, Xia B, Wang W, Xia L, He M, Cummings RD (2010) Cosmc is an essential chaperone for correct protein O-glycosylation. Proc Natl Acad Sci USA 107:9228–9233PubMedCentralPubMedCrossRefGoogle Scholar
  79. Wang Y, Jobe SM, Ding X, Choo H, Archer DR, Mi R, Ju T, Cummings RD (2012) Platelet biogenesis and functions require correct protein O-glycosylation. Proc Natl Acad Sci USA 109:16143–16148PubMedCentralPubMedCrossRefGoogle Scholar
  80. Wilkins PP, McEver RP, Cummings RD (1996) Structures of the O-glycans on P-selectin glycoprotein ligand-1 from HL-60 cells. J Biol Chem 271:18732–18742PubMedCrossRefGoogle Scholar
  81. Xia L, Ju T, Westmuckett A, An G, Ivanciu L, McDaniel JM, Lupu F, Cummings RD, McEver RP (2004) Defective angiogenesis and fatal embryonic hemorrhage in mice lacking core 1-derived O-glycans. J Cell Biol 164:451–459PubMedCrossRefGoogle Scholar
  82. Xie LS, Qin W, Fan JM, Huang J, Xie XS, Li Z (2010) The role of C1GALT1C1 in lipopolysaccharide-induced IgA1 aberrant O-glycosylation in IgA nephropathy. Clin Invest Med 33:E5–E13PubMedGoogle Scholar
  83. Yamada K, Kobayashi N, Ikeda T, Suzuki Y, Tsuge T, Horikoshi S, Emancipator SN, Tomino Y (2010) Down-regulation of core 1 beta1,3-galactosyltransferase and Cosmc by Th2 cytokine alters O-glycosylation of IgA1. Nephrol Dial Transplant 25:3890–3897PubMedCrossRefGoogle Scholar
  84. Yeh JC, Hiraoka N, Petryniak B, Nakayama J, Ellies LG, Rabuka D, Hindsgaul O, Marth JD, Lowe JB, Fukuda M (2001) Novel sulfated lymphocyte homing receptors and their control by a Core1 extension beta 1,3-N-acetylglucosaminyltransferase. Cell 105:957–969PubMedCrossRefGoogle Scholar
  85. Yoshida H, Fuwa TJ, Arima M, Hamamoto H, Sasaki N, Ichimiya T, Osawa K, Ueda R, Nishihara S (2008) Identification of the Drosophila core 1 beta1,3-galactosyltransferase gene that synthesizes T antigen in the embryonic central nervous system and hemocytes. Glycobiology 18:1094–1104PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Department of BiochemistryEmory University School of MedicineAtlantaUSA

Personalised recommendations