ST3 Beta-Galactoside Alpha-2,3-Sialyltransferase 5 (ST3GAL5)

  • Jin-ichi Inokuchi
  • Satoshi Uemura
Reference work entry


ST3Gal5 (GM3 synthase) was identified as the primary sialyltransferase responsible for the biosynthesis of ganglio-series gangliosides (Ishii et al. 1998; Kono et al. 1998; Fukumoto et al. 1999; Kapitonov et al. 1999). Ganglioside GM3 serves as a common precursor for complex gangliosides such as the a- and b-series gangliosides (Fig. 61.1). In addition, it was recently demonstrated that ST3Gal5 catalyzes GM4 synthesis in vivo (Chisada et al. 2009). Gangliosides are believed to form membrane microdomains (lipid rafts) that, with cholesterol and sphingomyelin, function as platforms for effective signal transduction in the plasma membrane (Simons and Gerl 2010) and participate in the regulation of numerous cellular processes, such as proliferation, differentiation, and adhesion (Hakomori 2004).


Lipid Raft Numerous Cellular Process Complex Ganglioside Leaky Scanning ST3Gal5 Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aerts JM, Ottenhoff R, Powlson AS, Grefhorst A, van Eijk M, Dubbelhuis PF, Aten J, Kuipers F, Serlie MJ, Wennekes T, Sethi JK, O’Rahilly S, Overkleeft HS (2007) Pharmacological inhibition of glucosylceramide synthase enhances insulin sensitivity. Diabetes 56:1341–1349PubMedCrossRefGoogle Scholar
  2. Berselli P, Zava S, Sottocornola E, Milani S, Berra B, Colombo I (2006) Human GM3 synthase: a new mRNA variant encodes an NH2-terminal extended form of the protein. Biochim Biophys Acta 1759:348–358PubMedCrossRefGoogle Scholar
  3. Bremer E, Hakomori S, Bowen-Pope DF, Raines E, Ross R (1984) Ganglioside-mediated modulation of cell growth, growth factor binding, and receptor phosphorylation. J Biol Chem 259:6818–6825PubMedGoogle Scholar
  4. Chisada S, Yoshimura Y, Sakaguchi K, Uemura S, Go S, Ikeda K, Uchima H, Matsunaga N, Ogura K, Tai T, Okino N, Taguchi R, Inokuchi J, Ito M (2009) Zebrafish and mouse a2,3-sialyltransferases responsible for synthesizing GM4 ganglioside. J Biol Chem 284:30534–30546PubMedCrossRefGoogle Scholar
  5. Choi HJ, Chung TW, Kang NY, Kim KS, Lee YC, Kim CH (2003) Transcriptional regulation of the human GM3 synthase (hST3Gal V) gene during monocytic differentiation of HL-60 cells. FEBS Lett 555:204–208PubMedCrossRefGoogle Scholar
  6. Choi HJ, Chung TW, Kang NY, Kim KS, Lee YC, Kim CH (2004) Involvement of CREB in the transcriptional regulation of the human GM3 synthase (hST3Gal V) gene during megakaryocytoid differentiation of human leukemia K562 cells. Biochem Biophys Res Commun 313:142–147PubMedCrossRefGoogle Scholar
  7. Coskun Ü, Grzybek M, Drechsel D, Simons K (2011) Regulation of human EGF receptor by lipids. Proc Natl Acad Sci U S A 108:9044–9048PubMedCentralPubMedCrossRefGoogle Scholar
  8. D’Angelo G, Polishchuk E, Di Tullio G, Santoro M, Di Campli A, Godi A, West G, Bielawski J, Chuang CC, van der Spoel AC, Platt FM, Hannun YA, Polishchuk R, Mattjus P, De Matteis MA (2007) Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature 449:62–67PubMedCrossRefGoogle Scholar
  9. Dykstra M, Cherukuri A, Sohn HW, Tzeng SJ, Pierce SK (2003) Location is everything: lipid rafts and immune cell signaling. Annu Rev Immunol 21:457–481PubMedCrossRefGoogle Scholar
  10. Fragaki K, Ait-El-Mkadem S, Chaussenot A, Gire C, Mengual R, Bonesso L, Bénéteau M, Ricci JE, Desquiret-Dumas V, Procaccio V, Rötig A, Paquis-Flucklinger V (2013) Refractory epilepsy and mitochondrial dysfunction due to GM3 synthase deficiency. Eur J Hum Genet 21:528–534Google Scholar
  11. Fukumoto S, Miyazaki H, Goto G, Urano T, Furukawa K, Furukawa K (1999) Expression cloning of mouse cDNA of CMP-NeuAc:lactosylceramide a2,3-sialyltransferase, an enzyme that initiates the synthesis of gangliosides. J Biol Chem 274:9271–9276PubMedCrossRefGoogle Scholar
  12. Giraudo CG, Maccioni HJ (2003a) Endoplasmic reticulum export of glycosyltransferases depends on interaction of a cytoplasmic dibasic motif with Sar1. Mol Biol Cell 14:3753–3766PubMedCentralPubMedCrossRefGoogle Scholar
  13. Giraudo CG, Maccioni HJ (2003b) Ganglioside glycosyltransferases organize in distinct multienzyme complexes in CHO-K1 cells. J Biol Chem 278:40262–40271PubMedCrossRefGoogle Scholar
  14. Giraudo CG, Daniotti JL, Maccioni HJ (2001) Physical and functional association of glycolipid N-acetyl-galactosaminyl and galactosyl transferases in the Golgi apparatus. Proc Natl Acad Sci U S A 98:1625–1630PubMedCentralPubMedCrossRefGoogle Scholar
  15. Go S, Yoshikawa M, Inokuchi J (2011) Glycoconjugates in the mammalian sauditory system. J Neurochem 116:756–763PubMedCrossRefGoogle Scholar
  16. Gómez-Móuton C et al (2001) Segregation of leading-edge and uropod componentsinto specific lipid rafts during T cell polarization. Proc Natl Acad Sci U S A 98:9642–9647PubMedCentralPubMedCrossRefGoogle Scholar
  17. Hakomori S (1990) Bifunctional role of glycosphingolipids. Modulators for transmembrane signaling and mediators for cellular interactions. J Biol Chem 265:18713–18716PubMedGoogle Scholar
  18. Hakomori S (2004) Glycosynapses: microdomains controlling carbohydratedependent cell adhesion and signaling. Ann Acad Bras Cienc 76:553–572CrossRefGoogle Scholar
  19. Harder T, Rentero C, Zech T, Gaus K (2007) Plasma membrane segregation during T cell activation: probing the order of domains. Curr Opin Immunol 19:470–475PubMedCrossRefGoogle Scholar
  20. Inokuchi J (2010) Membrane microdomains and insulin resistance. FEBS Lett 584:1864–1871PubMedCrossRefGoogle Scholar
  21. Inokuchi J (2011a) Physiopathological function of hematoside (GM3 ganglioside). Proc Jpn Acad Ser B 87:179–198CrossRefGoogle Scholar
  22. Inokuchi J (2011b) Inhibition of ganglioside biosynthesis as a novel therapeutic approach in insulin resistance. Handb Exp Pharmacol 203:165–178, SpringerPubMedCrossRefGoogle Scholar
  23. Inokuchi J, Kabayama K (2008) Modulation of growth factor receptors in membrane microdomains. Trends in Glycosci Glycotech 20:353–371CrossRefGoogle Scholar
  24. Inokuchi J, Radin N (1987) Preparation of the active isomer of 1-phenyl-2-decanoylamino-3-morpholino-1-propanol, inhibitor of murine glucocerebroside synthetase. J Lipid Res 28:565–571PubMedGoogle Scholar
  25. Inokuchi J, Nagafuku M, Ohno I, Suzuki A (2013) Heterogeneity of gangliosides among T cell subsets. Cell Mol Life Sci (in press)Google Scholar
  26. Ishii A, Ohta M, Watanabe Y, Matsuda K, Ishiyama K, Sakoe K, Nakamura M, Inokuchi J, Sanai Y, Saito M (1998) Expression cloning and functional characterization of human cDNA for ganglioside GM3 synthase. J Biol Chem 273:31652–31655PubMedCrossRefGoogle Scholar
  27. Kabayama K, Sato T, Kitamura F, Uemura S, Kang BW, Igarashi Y, Inokuchi J (2005) TNFalpha-induced insulin resistance in adipocytes as a membrane microdomain disorder: involvement of ganglioside GM3. Glycobiology 15:21–29PubMedCrossRefGoogle Scholar
  28. Kabayama K, Sato T, Saito K, Loberto N, Prinetti A, Sonnino S, Kinjo M, Igarashi Y, Inokuchi J (2007) Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proc Natl Acad Sci U S A 104:13678–13683PubMedCentralPubMedCrossRefGoogle Scholar
  29. Kapitonov D, Bieberich E, Yu RK (1999) Combinatorial PCR approach to homology-based cloning: cloning and expression of mouse and human GM3-synthase. Glycoconj J 16:337–350PubMedCrossRefGoogle Scholar
  30. Kim KW, Kim SW, Min KS, Kim CH, Lee YC (2001) Genomic structure of human GM3 synthase gene (hST3Gal V) and identification of mRNA isoforms in the 5-untranslated region. Gene 273:163–171PubMedCrossRefGoogle Scholar
  31. Kim SW, Lee SH, Kim KS, Kim CH, Choo YK, Lee YC (2002) Isolation and characterization of the promoter region of the human GM3 synthase gene. Biochim Biophys Acta 1578:84–89PubMedCrossRefGoogle Scholar
  32. Kojima N, Hakomori S (1991) Synergistic effect of two cell recognition systems: glycosphingolipid-glycosphingolipid interaction and integrin receptor interaction with pericellular matrix protein. Glycobiology 1:623–630PubMedCrossRefGoogle Scholar
  33. Kono M, Takashima S, Liu H, Inoue M, Kojima N, Lee YC, Hamamoto T, Tsuji S (1998) Molecular cloning and functional expression of a fifth-type alpha 2,3-sialyltransferase (mST3Gal V:GM3 synthase). Biochem Biophys Res Commun 253:170–175PubMedCrossRefGoogle Scholar
  34. Kovacs B et al (2002) Human CD8+ T cells do not require the polarization of lipid rafts for activation and proliferation. Proc Natl Acad Sci U S A 99:15006–15011PubMedCentralPubMedCrossRefGoogle Scholar
  35. Kozak M (2002) Pushing the limits of the scanning mechanism for initiation of translation. Gene 299:1–34PubMedCrossRefGoogle Scholar
  36. Meivar-Levy I, Sabanay H, Bershadsky AD, Futerman AH (1997) Up-regulation of neutral glycosphingolipid synthesis upon long term inhibition of ceramide synthesis by fumonisin B1. J Biol Chem 272:1558–1564PubMedCrossRefGoogle Scholar
  37. Melkerson-Watson LJ, Sweeley CC (1991) Purification to apparent homogeneity by immunoaffinity chromatography and partial characterization of the GM3 ganglioside-forming enzyme, CMP-sialic acid:lactosylceramide a2,3-sialyltransferase (SAT-1), from rat liver Golgi. J Biol Chem 266:4448–4457PubMedGoogle Scholar
  38. Nagafuku M, Okuyama K, Onimaru Y, Suzuki A, Odagiri Y, Yamashita T, Iwasaki K, Fujiwara M, Takayanagi M, Ohno I, Inokuchi J (2012) CD4 and CD8 T cells require different membrane gangliosides for activation. Proc Natl Acad Sci U S A 109:E336–E342PubMedCentralPubMedCrossRefGoogle Scholar
  39. Nojiri H, Takaku F, Tetsuka T, Motoyoshi K, Miura Y, Saito M (1984) Neolacto-series gangliosides induce granulocytic differentiation of human promyelocytic leukemia cell line HL-60. Blood 64:534–541PubMedGoogle Scholar
  40. Nojiri H, Takaku F, Terui Y, Miura Y, Saito M (1986) Ganglioside GM3: an acidic membrane component that increases during macrophage-like cell differentiation can induce monocytic differentiation of human myeloid and monocytoid leukemic cell lines HL-60 and U937. Proc Natl Acad Sci U S A 83:782–786PubMedCentralPubMedCrossRefGoogle Scholar
  41. Preuss U, Gu X, Gu T, Yu RK (1993) Purification and Characterization of CMP-N-acetylneuraminic acid:lactosylceramide (a2-3) sialyltransferase (GM3-synthase) from rat brain. J Biol Chem 268:26273–26278PubMedGoogle Scholar
  42. Sato T, Nihei Y, Nagafuku M, Tagami S, Chin R, Kawamura M, Miyazaki S, Suzuki M, Sugahara S, Takahashi Y, Saito A, Igarashi Y, Inokuchi J (2008) Circulating levels of Ganglioside GM3 in metabolic syndrome: a pilot study. Obes Res Clin Pract 2:231–238CrossRefGoogle Scholar
  43. Simons K, Gerl MJ (2010) Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11:689–699CrossRefGoogle Scholar
  44. Simpson M, Cross H, Proukakis C et al (2004) Infantile-onset symptomatic epilepsy syndrome caused by a homozygous loss-of-function mutation of GM3 synthase. Nat Genet 11:1225–1229CrossRefGoogle Scholar
  45. Tagami S, Inokuchi J, Kabayama S, Yoshimura H, Kitamura F, Uemura S, Ogawa C, Ishii A, Saito M, Ohtsuka Y, Sakaue S, Igarashi Y (2002) Ganglioside GM3 participates in the pathological conditions of insulin resistance. J Biol Chem 277:3085–3092PubMedCrossRefGoogle Scholar
  46. Uemura S, Kurose T, Suzuki T, Yoshida S, Ito M, Saito M, Igarashi Y, Inokuchi J (2006) Substitution of the N-glycan Function in Glycosyltransferases by Specific Amino Acids (SUNGA): ST3Gal-V as a model enzyme. Glycobiology 16:258–270PubMedCrossRefGoogle Scholar
  47. Uemura S, Yoshida S, Shishido F, Inokuchi J (2009) The cytoplasmic tail of GM3 synthase defines its subcellular localization, stability, and in vivo activity. Mol Biol Cell 20:3088–3100PubMedCentralPubMedCrossRefGoogle Scholar
  48. Uliana AS, Crespo PM, Martina JA, Daniotti JL, Maccioni HJ (2006) Modulation of GalT1 and SialT1 sub-Golgi localization by SialT2 expression reveals an organellar level of glycolipid synthesis control. J Biol Chem 281:32852–32860PubMedCrossRefGoogle Scholar
  49. van Eijk M, Aten J, Bijl N, Ottenhoff R, van Roomen CP, Dubbelhuis PF, Seeman I, Ghauharali-van der Vlugt K, Overkleeft HS, Arbeeny C, Groen AK, Aerts JM (2009) Reducing glycosphingolipid content in adipose tissue of obese mice restores insulin sensitivity, adipogenesis and reduces inflammation. PLoS One 4:e4723PubMedCentralPubMedCrossRefGoogle Scholar
  50. Xia T, Zeng G, Gao L, Yu RK (2005) Sp1 and AP2 enhance promoter activity of the mouse GM3-synthase gene. Gene 351:109–118PubMedCrossRefGoogle Scholar
  51. Yamashita T, Hashiramoto A, Haluzik M, Mizukami H, Beck S, Norton A, Kono M, Tsuji S, Daniotti JL, Werth N, SandhoffR SK, Proia RL (2003) Enhanced insulin sensitivity in mice lacking ganglioside GM3. Proc Natl Acad Sci U S A 100:3445–3449PubMedCentralPubMedCrossRefGoogle Scholar
  52. Yoshikawa M, Go S, Takasaki KY, Ohashi M, Nagafuku M, Kabayama K, Sekimoto J, Suzuki S, Takaiwa K, Kimitsuki T, Matsumoto N, Komune S, Kamei D, Saito M, Fujiwara M, Iwasaki K, Inokuchi J (2009) Mice lacking ganglioside GM3 synthase exhibit complete hearing loss due to selective degeneration of the organ of Corti. Proc Natl Acad Sci U S A 106:9483–9488PubMedCentralPubMedCrossRefGoogle Scholar
  53. Zeng G, Gao L, Xia T, Tencomnao T, Yu RK (2003) Characterization of the 5-flanking fragment of the human GM3-synthase gene. Biochim Biophys Acta 1625:30–35PubMedCrossRefGoogle Scholar
  54. Zhao H, Przybylska M, Wu IH, Zhang J, Siegel C, Komarnitsky S, Yew NS, Cheng SH (2007) Inhibiting glycosphingolipid synthesis improves glycemic control and insulin sensitivity in animal models of type 2 diabetes. Diabetes 56:1210–1218PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Division of GlycopathologyTohoku Pharmaceutical University, Institute of Molecular Biomembranes and GlycobiologySendaiJapan
  2. 2.Molecular Genetic Research Department of Chemistry and Biological ScienceAoyama Gakuin University, College of Science and EngineeringSagamiharaJapan

Personalised recommendations