Fucosyltransferase 8. GDP-Fucose N-Glycan Core α6-Fucosyltransferase (FUT8)

  • Hideyuki Ihara
  • Hiroki Tsukamoto
  • Jianguo Gu
  • Eiji Miyoshi
  • Naoyuki Taniguchi
  • Yoshitaka Ikeda
Reference work entry


α1,6-Fucosylation of asparagine-linked oligosaccharides (N-glycans) is ubiquitously observed in eukaryote except plant and fungi. This type of fucosylation is catalyzed by eukaryotic α1,6-fucosyltransferase, and this enzyme is called as FUT8, notably in mammalian. FUT8 transfers fucose moiety from GDP-β-L-fucose to the innermost GlcNAc residue in N-glycan (Fig. 59.1). FUT8 was purified from porcine brain (Uozumi et al. 1996b) and MKN45 cells, a human gastric cancer cell line (Yanagidani et al. 1997). The cDNAs were successfully cloned from porcine and human (Uozumi et al. 1996b; Yanagidani et al. 1997). α1,6-Fucosylation catalyzed by FUT8 and the resulting α1,6-fucose residue is denoted as core fucosylation and core fucose, respectively.


MKN45 Cell Human Gastric Cancer Cell Line Porcine Brain Fucose Residue Terminal GlcNAc 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aoyagi Y, Suzuki Y, Isemura M, Nomoto M, Sekine C, Igarashi K, Ichida F (1988) The fucosylation index of alpha-fetoprotein and its usefulness in the early diagnosis of hepatocellular carcinoma. Cancer 61:769–774. doi:10.1002/1097-0142(19880215)61:4<769::AID-CNCR2820610422>3.0.CO;2-MPubMedCrossRefGoogle Scholar
  2. Aoyagi Y, Suzuki Y, Igarashi K, Saitoh A, Oguro M, Yokota T, Mori S, Suda T, Isemura M, Asakura H (1993) Carbohydrate structures of human alpha-fetoprotein of patients with hepatocellular carcinoma: presence of fucosylated and non-fucosylated triantennary glycans. Br J Cancer 67:486–492. doi:10.1038/bjc.1993.91PubMedCentralPubMedCrossRefGoogle Scholar
  3. Breton C, Oriol R, Imberty A (1998) Conserved structural features in eukaryotic and prokaryotic fucosyltransferases. Glycobiology 8:87–94PubMedCrossRefGoogle Scholar
  4. Brzezinski K, Stepkowski T, Panjikar S, Bujacz G, Jaskolski M (2007) High-resolution structure of NodZ fucosyltransferase involved in the biosynthesis of the nodulation factor. Acta Biochim Pol 54:537–549PubMedGoogle Scholar
  5. Brzezinski K, Dauter Z, Jaskolski M (2012) Structures of NodZ α1,6-fucosyltransferase in complex with GDP and GDP-fucose. Acta Crystallogr D Biol Crystallogr 68:160–168. doi:10.1107/S0907444911053157PubMedCrossRefGoogle Scholar
  6. Ferrara C, Grau S, Jäger C, Sondermann P, Brünker P, Waldhauer I, Hennig M, Ruf A, Rufer AC, Stihle M, Umaña P, Benz J (2011) Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose. Proc Natl Acad Sci U S A 108:12669–12674. doi:10.1073/pnas.1108455108PubMedCentralPubMedCrossRefGoogle Scholar
  7. Fukuda T, Hashimoto H, Okayasu N, Kameyama A, Onogi H, Nakagawasai O, Nakazawa T, Kurosawa T, Hao Y, Isaji T, Tadano T, Narimatsu H, Taniguchi N, Gu J (2011) α1,6-Fucosyltransferase-deficient mice exhibit multiple behavioral abnormalities associated with a schizophrenia-like phenotype: importance of the balance between the dopamine and serotonin systems. J Biol Chem 286:18434–18443. doi:10.1074/jbc.M110.172536PubMedCrossRefGoogle Scholar
  8. Gao C, Maeno T, Ota F, Ueno M, Korekane H, Takamatsu S, Shirato K, Matsumoto A, Kobayashi S, Yoshida K, Kitazume S, Ohtsubo K, Betsuyaku T, Taniguchi N (2012) Sensitivity of heterozygous α1,6-fucosyltransferase knock-out mice to cigarette smoke-induced emphysema: implication of aberrant transforming growth factor-signaling and matrix metalloproteinase gene expression. J Biol Chem 287:16699–16708. doi:10.1074/jbc.M111.315333PubMedCrossRefGoogle Scholar
  9. Ihara H, Ikeda Y, Taniguchi N (2006) Reaction mechanism and substrate specificity for nucleotide sugar of mammalian α1,6-fucosyltransferase – a large-scale preparation and characterization of recombinant human FUT8. Glycobiology 16:333–342. doi:10.1093/glycob/cwj068PubMedCrossRefGoogle Scholar
  10. Ihara H, Ikeda Y, Toma S, Wang X, Suzuki T, Gu J, Miyoshi E, Tsukihara T, Honke K, Matsumoto A, Nakagawa A, Taniguchi N (2007) Crystal structure of mammalian α1,6-fucosyltransferase, FUT8. Glycobiology 17:455–466. doi:10.1093/glycob/cwl079PubMedCrossRefGoogle Scholar
  11. Ihara H, Hanashima S, Okada T, Ito R, Yamaguchi Y, Taniguchi N, Ikeda Y (2010a) Fucosylation of chitooligosaccharides by human α1,6-fucosyltransferase requires a nonreducing terminal chitotriose unit as a minimal structure. Glycobiology 20:1021–1033. doi:10.1093/glycob/cwq064PubMedCrossRefGoogle Scholar
  12. Ihara H, Gao CX, Ikeda Y, Taniguchi N (2010b) FUT8 (fucosyltransferase 8 (alpha (1,6) fucosyltransferase)). Atlas Genet Cytogenet Oncol Haematol. doi: 10.4267/2042/45014
  13. Ito Y, Miyauchi A, Yoshida H, Uruno T, Nakano K, Takamura Y, Miya A, Kobayashi K, Yokozawa T, Matsuzuka F, Taniguchi N, Matsuura N, Kuma K, Miyoshi E (2003) Expression of α1,6-fucosyltransferase (FUT8) in papillary carcinoma of the thyroid: its linkage to biological aggressiveness and anaplastic transformation. Cancer Lett 200:167–172. doi:10.1016/S0304-3835(03)00383-5PubMedCrossRefGoogle Scholar
  14. Kamińska J, Glick MC, Kościelak J (1998) Purification and characterization of GDP-L-Fuc: N-acetyl β-d-glucosaminide α1–>6fucosyltransferase from human blood platelets. Glycoconj J 15:783–788PubMedCrossRefGoogle Scholar
  15. Kamio K, Yoshida T, Gao C, Ishii T, Ota F, Motegi T, Kobayashi S, Fujinawa R, Ohtsubo K, Kitazume S, Angata T, Azuma A, Gemma A, Nishimura M, Betsuyaku T, Kida K, Taniguchi N (2012) α1,6-Fucosyltransferase (Fut8) is implicated in vulnerability to elastase-induced emphysema in mice and a possible non-invasive predictive marker for disease progression and exacerbations in chronic obstructive pulmonary disease (COPD). Biochem Biophys Res Commun 424:112–117. doi:10.1016/j.bbrc.2012.06.081PubMedCrossRefGoogle Scholar
  16. Kötzler MP, Blank S, Bantleon FI, Spillner E, Meyer B (2012) Donor substrate binding and enzymatic mechanism of human core α1,6-fucosyltransferase (FUT8). Biochim Biophys Acta 1820:1915–1925. doi:10.1016/j.bbagen.2012.08.018PubMedCrossRefGoogle Scholar
  17. Lee SH, Takahashi M, Honke K, Miyoshi E, Osumi D, Sakiyama H, Ekuni A, Wang X, Inoue S, Gu J, Kadomatsu K, Taniguchi N (2006) Loss of core fucosylation of low-density lipoprotein receptor-related protein-1 impairs its function, leading to the upregulation of serum levels of insulin-like growth factor-binding protein 3 in Fut8-/- mice. J Biochem 139:391–398. doi:10.1093/jb/mvj039PubMedCrossRefGoogle Scholar
  18. Li W, Nakagawa T, Koyama N, Wang X, Jin J, Mizuno-Horikawa Y, Gu J, Miyoshi E, Kato I, Honke K, Taniguchi N, Kondo A (2006) Down-regulation of trypsinogen expression is associated with growth retardation in α1,6-fucosyltransferase-deficient mice: attenuation of proteinase-activated receptor 2 activity. Glycobiology 16:1007–1019. doi:10.1093/glycob/cwl023PubMedCrossRefGoogle Scholar
  19. Li W, Ishihara K, Yokota T, Nakagawa T, Koyama N, Jin J, Mizuno-Horikawa Y, Wang X, Miyoshi E, Taniguchi N, Kondo A (2008) Reduced α4β1 integrin/VCAM-1 interactions lead to impaired pre-B cell repopulation in α1,6-fucosyltransferase deficient mice. Glycobiology 18:114–124. doi:10.1093/glycob/cwm107PubMedCrossRefGoogle Scholar
  20. Mizushima T, Yagi H, Takemoto E, Shibata-Koyama M, Isoda Y, Iida S, Masuda K, Satoh M, Kato K (2011) Structural basis for improved efficacy of therapeutic antibodies on defucosylation of their Fc glycans. Genes Cells 16:1071–1080. doi:10.1111/j.1365-2443.2011.01552.xPubMedCentralPubMedCrossRefGoogle Scholar
  21. Li W, Liu Q, Pang Y, Jin J, Wang H, Cao H, Li Z, Wang X, Ma B, Chi Y, Wang R, Kondo A, Gu J, Taniguchi N (2012) Core fucosylation of μ heavy chains regulates assembly and intracellular signaling of precursor B cell receptors. J Biol Chem 287:2500–2508. doi:10.1074/jbc.M111.303123PubMedCrossRefGoogle Scholar
  22. Longmore GD, Schachter H (1982) Product-identification and substrate-specificity studies of the GDP-L-fucose: 2-acetamido-2-deoxy-β-d-glucoside (FUC goes to Asn-linked GlcNAc) 6-α-L-fucosyltransferase in a Golgi-rich fraction from porcine liver. Carbohydr Res 100:365–392PubMedCrossRefGoogle Scholar
  23. Martinez-Duncker I, Mollicone R, Candelier JJ, Breton C, Oriol R (2003) A new superfamily of protein-O-fucosyltransferases, α2-fucosyltransferases, and α6-fucosyltransferases: phylogeny and identification of conserved peptide motifs. Glycobiology 13:1C–5C. doi:10.1093/glycob/cwg113PubMedCrossRefGoogle Scholar
  24. Martinez-Duncker I, Michalski JC, Bauvy C, Candelier JJ, Mennesson B, Codogno P, Oriol R, Mollicone R (2004) Activity and tissue distribution of splice variants of α6-fucosyltransferase in human embryogenesis. Glycobiology 14:13–25. doi:10.1093/glycob/cwh006PubMedCrossRefGoogle Scholar
  25. Mita Y, Aoyagi Y, Suda T, Asakura H (2000) Plasma fucosyltransferase activity in patients with hepatocellular carcinoma, with special reference to correlation with fucosylated species of α-fetoprotein. J Hepatol 32:946–954. doi:10.1016/S0168-8278(00)80099-9PubMedCrossRefGoogle Scholar
  26. Miyoshi E, Uozumi N, Noda K, Hayashi N, Hori M, Taniguchi N (1997) Expression of α1,6 fucosyltransferase in rat tissues and human cancer cell lines. Int J Cance 72:1117–1121. doi:10.1002/(SICI)1097-0215(19970917)72:6<1117::AID-IJC29>3.0.CO;2-#CrossRefGoogle Scholar
  27. Miyoshi E, Noda K, Ko JH, Ekuni A, Kitada T, Uozumi N, Ikeda Y, Matsuura N, Sasaki Y, Hayashi N, Hori M, Taniguchi N (1999a) Overexpression of α1,6 fucosyltransferase in hepatoma cells suppresses intrahepatic metastasis after splenic injection in athymic mice. Cancer Res 59:2237–2243PubMedGoogle Scholar
  28. Miyoshi E, Noda K, Yamaguchi Y, Inoue S, Ikeda Y, Wang W, Ko JH, Uozumi N, Li W, Taniguchi N (1999b) The α1,6-fucosyltransferase gene and its biological significance. Biochim Biophys Acta 1473:9–20. doi:org/10.1016/S0304-4165(99)00166-XPubMedCrossRefGoogle Scholar
  29. Muinelo-Romay L, Vázquez-Martín C, Villar-Portela S, Cuevas E, Gil-Martín E, Fernández-Briera A (2008) Expression and enzyme activity of α(1,6)fucosyltransferase in human colorectal cancer. Int J Cancer 123:641–646. doi:10.1002/ijc.23521PubMedCrossRefGoogle Scholar
  30. Nakagawa T, Uozumi N, Nakano M, Mizuno-Horikawa Y, Okuyama N, Taguchi T, Gu J, Kondo A, Taniguchi N, Miyoshi E (2006) Fucosylation of N-glycans regulates the secretion of hepatic glycoproteins into bile ducts. J Biol Chem 281:29797–29806. doi:10.1074/jbc.M605697200Google Scholar
  31. Nakagawa T, Miyoshi E, Yakushijin T, Hiramatsu N, Igura T, Hayashi N, Taniguchi N, Kondo A (2008) Glycomic analysis of alpha-fetoprotein L3 in hepatoma cell lines and hepatocellular carcinoma patients. J Proteome Res 7:2222–2233. doi:10.1021/pr700841qPubMedCrossRefGoogle Scholar
  32. Nakakita S, Menon KK, Natsuka S, Ikenaka K, Hase S (1999) β1-4Galactosyltransferase activity of mouse brain as revealed by analysis of brain-specific complex-type N-linked sugar chains. J Biochem 126:1161–1169PubMedCrossRefGoogle Scholar
  33. Narisada M, Kawamoto S, Kuwamoto K, Moriwaki K, Nakagawa T, Matsumoto H, Asahi M, Koyama N, Miyoshi E (2008) Identification of an inducible factor secreted by pancreatic cancer cell lines that stimulates the production of fucosylated haptoglobin in hepatoma cells. Biochem Biophys Res Commun 377:792–796. doi:10.1016/j.bbrc.2008.10.061PubMedCrossRefGoogle Scholar
  34. Noda K, Miyoshi E, Uozumi N, Yanagidani S, Ikeda Y, Gao C, Suzuki K, Yoshihara H, Yoshikawa K, Kawano K, Hayashi N, Hori M, Taniguchi N (1998) Gene expression of α1,6 fucosyltransferase in human hepatoma tissues: a possible implication for increased fucosylation of α-fetoprotein. Hepatology 28:944–952. doi:10.1002/hep.510280408PubMedCrossRefGoogle Scholar
  35. Noda K, Miyoshi E, Gu J, Gao CX, Nakahara S, Kitada T, Honke K, Suzuki K, Yoshihara H, Yoshikawa K, Kawano K, Tonetti M, Kasahara A, Hori M, Hayashi N, Taniguchi N (2003) Relationship between elevated FX expression and increased production of GDP-L-fucose, a common donor substrate for fucosylation in human hepatocellular carcinoma and hepatoma cell lines. Cancer Res 63:6282–6289PubMedGoogle Scholar
  36. Noronkoski T, Mononen I (1997) Influence of L-fucose attached α1–>6 to the asparagine-linked N-acetylglucosamine on the hydrolysis of the N-glycosidic linkage by human glycosylasparaginase. Glycobiology 7:217–220. doi:10.1093/glycob/7.2.217PubMedCrossRefGoogle Scholar
  37. Okazaki A, Shoji-Hosaka E, Nakamura K, Wakitani M, Uchida K, Kakita S, Tsumoto K, Kumagai I, Shitara K (2004) Fucose depletion from human IgG1 oligosaccharide enhances binding enthalpy and association rate between IgG1 and FcgRIIIa. J Mol Biol 336:1239–1249. doi:10.1016/j.jmb.2004.01.007PubMedCrossRefGoogle Scholar
  38. Okuyama N, Ide Y, Nakano M, Nakagawa T, Yamanaka K, Moriwaki K, Murata K, Ohigashi H, Yokoyama S, Eguchi H, Ishikawa O, Ito T, Kato M, Kasahara A, Kawano S, Gu J, Taniguchi N, Miyoshi E (2006) Fucosylated haptoglobin is a novel marker for pancreatic cancer: a detailed analysis of the oligosaccharide structure and a possible mechanism for fucosylation. Int J Cancer 118:2803–2808. doi:10.1002/ijc.21728PubMedCrossRefGoogle Scholar
  39. Oriol R, Mollicone R, Cailleau A, Balanzino L, Breton C (1999) Divergent evolution of fucosyltransferase genes from vertebrates, invertebrates, and bacteria. Glycobiology 9:324–334CrossRefGoogle Scholar
  40. Osumi D, Takahashi M, Miyoshi E, Yokoe S, Lee SH, Noda K, Nakamori S, Gu J, Ikeda Y, Kuroki Y, Sengoku K, Ishikawa M, Taniguchi N (2009) Core fucosylation of E-cadherin enhances cell-cell adhesion in human colon carcinoma WiDr cells. Cancer Sci 100:888–895. doi:10.1111/j.1349-7006.2009.01125.xPubMedCrossRefGoogle Scholar
  41. Paschinger K, Staudacher E, Stemmer U, Fabini G, Wilson IB (2005) Fucosyltransferase substrate specificity and the order of fucosylation in invertebrates. Glycobiology 15:463–474. doi:10.1093/glycob/cwi028PubMedCrossRefGoogle Scholar
  42. Scanlin TF, Wang YM, Glick MC (1985) Altered fucosylation of membrane glycoproteins from cystic fibrosis fibroblasts. Pediatr Res 19:368–374PubMedCrossRefGoogle Scholar
  43. Seko A, Koketsu M, Nishizono M, Enoki Y, Ibrahim HR, Juneja LR, Kim M, Yamamoto T (1997) Occurrence of a sialylglycopeptide and free sialylglycans in hen’s egg yolk. Biochim Biophys Acta 1335:23–32. doi:10.1016/S0304-4165(96)00118-3PubMedCrossRefGoogle Scholar
  44. Shields RL, Lai J, Keck R, O’Connell LY, Hong K, Meng YG, Weikert SH, Presta LG (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human FcgRIII and antibody-dependent cellular toxicity. J Biol Chem 277:26733–26740. doi:10.1074/jbc.M202069200PubMedCrossRefGoogle Scholar
  45. Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, Uchida K, Anazawa H, Satoh M, Yamasaki M, Hanai N, Shitara K (2003) The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem 278:3466–3473. doi:10.1074/jbc.M210665200PubMedCrossRefGoogle Scholar
  46. Staudacher E, Altmann F, Wilson IB, Marz L (1999) Fucose in N-glycans: from plant to man. Biochim Biophys Acta 473:216–236. doi:10.1016/S0304-4165(99)00181-6CrossRefGoogle Scholar
  47. Struppe E, Staudacher E (2000) Occurrence of GDP-L-fucose: β-N-acetylglucosamine (Fuc to asn-linked GlcNAc) α1,6-fucosyltransferases in porcine, sheep, bovine, rabbit and chicken tissues. Biochim Biophys Acta 1475:360–368. doi:10.1016/S0304-4165(00)00092-1PubMedCrossRefGoogle Scholar
  48. Takahashi M, Kuroki Y, Ohtsubo K, Taniguchi N (2009) Core fucose and bisecting GlcNAc, the direct modifiers of the N-glycan core: their functions and target proteins. Carbohydr Res 344:1387–1390. doi:10.1016/j.carres.2009.04.031PubMedCrossRefGoogle Scholar
  49. Takahashi T, Ikeda Y, Tateishi A, Yamaguchi Y, Ishikawa M, Taniguchi N (2000a) A sequence motif involved in the donor substrate binding by α1,6-fucosyltransferase: the role of the conserved arginine residues. Glycobiology 10:503–510. doi:10.1093/glycob/10.5.503PubMedCrossRefGoogle Scholar
  50. Takahashi T, Ikeda Y, Miyoshi E, Yaginuma Y, Ishikawa M, Taniguchi N (2000b) α1,6Fucosyltransferase is highly and specifically expressed in human ovarian serous adenocarcinomas. Int J Cancer 88:914–919. doi:10.1002/1097-0215(20001215)88:6<914::AID-IJC12>3.0.CO;2-1PubMedCrossRefGoogle Scholar
  51. Taketa K, Hirai H (1989) Lectin affinity electrophoresis of alpha-fetoprotein in cancer diagnosis. Electrophoresis 10:562–567. doi:10.1002/elps.1150100805PubMedCrossRefGoogle Scholar
  52. Taketa K, Endo Y, Sekiya C, Tanikawa K, Koji T, Taga H, Satomura S, Matsuura S, Kawai T, Hirai H (1993) A collaborative study for the evaluation of lectin-reactive alpha-fetoproteins in early detection of hepatocellular carcinoma. Cancer Res 53:5419–5423PubMedGoogle Scholar
  53. Taniguchi N, Miyoshi E, Gu J, Honke K, Matsumoto A (2006) Decoding sugar functions by identifying target glycoproteins. Curr Opin Struct Biol 16:561–566. doi:10.1016/ Scholar
  54. Taniguchi N, Korekane H (2011) Branched N-glycans and their implications for cell adhesion, signaling and clinical applications for cancer biomarkers and in therapeutics. BMB Rep 44:772–781PubMedCrossRefGoogle Scholar
  55. Uozumi N, Teshima T, Yamamoto T, Nishikawa A, Gao YE, Miyoshi E, Gao CX, Noda K, Islam KN, Ihara Y, Fujii S, Shiba T, Taniguchi N (1996a) A fluorescent assay method for GDP-L-Fuc:N-acetyl-β-d-glucosaminide α1,6fucosyltransferase activity, involving high performance liquid chromatography. J Biochem 120:385–392PubMedCrossRefGoogle Scholar
  56. Uozumi N, Yanagidani S, Miyoshi E, Ihara Y, Sakuma T, Gao CX, Teshima T, Fujii S, Shiba T, Taniguchi N (1996b) Purification and cDNA cloning of porcine brain GDP-L-Fuc:N-acetyl-β-d-glucosaminide α1–>6fucosyltransferase. J Biol Chem 271:27810–27817. doi:10.1074/jbc.271.44.27810PubMedCrossRefGoogle Scholar
  57. Yamada M, Ishii T, Ikeda S, Naka-Mieno M, Tanaka N, Arai T, Kumasaka T, Gemma A, Kida K, Muramatsu M, Sawabe M (2011) Association of fucosyltransferase 8 (FUT8) polymorphism Thr267Lys with pulmonary emphysema. J Hum Genet 56:857–860. doi:10.1038/jhg.2011.118PubMedCrossRefGoogle Scholar
  58. Yamaguchi Y, Ikeda Y, Takahashi T, Ihara H, Tanaka T, Sasho C, Uozumi N, Yanagidani S, Inoue S, Fujii J, Taniguchi N (2000) Genomic structure and promoter analysis of the human α1,6-fucosyltransferase gene (FUT8). Glycobiology 10:637–643. doi:10.1093/glycob/10.6.637PubMedCrossRefGoogle Scholar
  59. Yamaguchi Y, Fujii J, Inoue S, Uozumi N, Yanagidani S, Ikeda Y, Egashira M, Miyoshi O, Niikawa N, Taniguchi N (1999) Mapping of the α1,6-fucosyltransferase gene, FUT8, to human chromosome 14q24.3. Cytogenet Cell Genet 84:58–60. doi:10.1159/000015215PubMedCrossRefGoogle Scholar
  60. Yamashita F, Tanaka M, Satomura S, Tanikawa K (1996) Prognostic significance of Lens culinaris agglutinin A-reactive alpha-fetoprotein in small hepatocellular carcinomas. Gastroenterology 111(4):996–1001. doi:10.1016/S0016-5085(96)70067-7PubMedCrossRefGoogle Scholar
  61. Yanagidani S, Uozumi N, Ihara Y, Miyoshi E, Yamaguchi N, Taniguchi N (1997) Purification and cDNA cloning of GDP-L-Fuc:N-acetyl-β-d-glucosaminide: α1,6 fucosyltransferase (a1,6 FucT) from human gastric cancer MKN45 cells. J Biochem 121:626–632PubMedCrossRefGoogle Scholar
  62. Vanhooren V, Desmyter L, Liu XE, Cardelli M, Franceschi C, Federico A, Libert C, Laroy W, Dewaele S, Contreras R, Chen C (2007) N-glycomic changes in serum proteins during human aging. Rejuvenation Res 10:521–531aPubMedCrossRefGoogle Scholar
  63. Vanhooren V, Dewaele S, Libert C, Engelborghs S, De Deyn PP, Toussaint O, Debacq-Chainiaux F, Poulain M, Glupczynski Y, Franceschi C, Jaspers K, van der Pluijm I, Hoeijmakers J, Chen CC (2010) Serum N-glycan profile shift during human ageing. Exp Gerontol 45:738–743. doi:10.1016/j.exger.2010.08.009PubMedCrossRefGoogle Scholar
  64. Vanhooren V, Dewaele S, Kuro-O M, Taniguchi N, Dollé L, van Grunsven LA, Makrantonaki E, Zouboulis CC, Chen CC, Libert C (2011) Alteration in N-glycomics during mouse aging: a role for FUT8. Aging Cell 10:1056–1066. doi:10.1111/j.1474-9726.2011.00749.xPubMedCrossRefGoogle Scholar
  65. Voynow JA, Kaiser RS, Scanlin TF, Glick MC (1991) Purification and characterization of GDP-L-fucose-N-acetyl β-d-glucosaminide α1- 6fucosyltransferase from cultured human skin fibroblasts. Requirement of a specific biantennary oligosaccharide as substrate. J Biol Chem 266:21572–21577PubMedGoogle Scholar
  66. Zhao Y, Itoh S, Wang X, Isaji T, Miyoshi E, Kariya Y, Miyazaki K, Kawasaki N, Taniguchi N, Gu J (2006) Deletion of core fucosylation on α3β1 integrin down-regulates its functions. J Biol Chem 281:38343–38350. doi:10.1074/jbc.M608764200PubMedCrossRefGoogle Scholar
  67. Wang X, Inoue S, Gu J, Miyoshi E, Noda K, Li W, Mizuno-Horikawa Y, Nakano M, Asahi M, Takahashi M, Uozumi N, Ihara S, Lee SH, Ikeda Y, Yamaguchi Y, Aze Y, Tomiyama Y, Fujii J, Suzuki K, Kondo A, Shapiro SD, Lopez-Otin C, Kuwaki T, Okabe M, Honke K, Taniguchi N (2005) Dysregulation of TGF-β1 receptor activation leads to abnormal lung development and emphysema-like phenotype in core fucose-deficient mice. Proc Natl Acad Sci U S A 102:15791–15796. doi:10.1073/pnas.0507375102PubMedCentralPubMedCrossRefGoogle Scholar
  68. Wang X, Gu J, Ihara H, Miyoshi E, Honke K, Taniguchi N (2006a) Core fucosylation regulates epidermal growth factor receptor-mediated intracellular signaling. J Biol Chem 281:2572–2577. doi:10.1074/jbc.M510893200PubMedCrossRefGoogle Scholar
  69. Wang X, Gu J, Miyoshi E, Honke K, Taniguchi N (2006b) Phenotype changes of Fut8 knockout mouse: core fucosylation is crucial for the function of growth factor receptor(s). Methods Enzymol 417:11–22. doi:10.1016/S0076-6879(06)17002-0PubMedCrossRefGoogle Scholar
  70. Wang X, Fukuda T, Li W, Gao CX, Kondo A, Matsumoto A, Miyoshi E, Taniguchi N, Gu J (2009) Requirement of Fut8 for the expression of vascular endothelial growth factor receptor-2: a new mechanism for the emphysema-like changes observed in Fut8-deficient mice. J Biochem 145:643–651. doi:10.1093/jb/mvp022PubMedCrossRefGoogle Scholar
  71. Wang YM, Hare TR, Won B, Stowell CP, Scanlin TF, Glick MC, Hård K, van Kuik JA, Vliegenthart JF (1990) Additional fucosyl residues on membrane glycoproteins but not a secreted glycoprotein from cystic fibrosis fibroblasts. Clin Chim Acta 188:193–210PubMedCrossRefGoogle Scholar
  72. Wang W, Li W, Ikeda Y, Miyagawa JI, Taniguchi M, Miyoshi E, Sheng Y, Ekuni A, Ko JH, Yamamoto Y, Sugimoto T, Yamashita S, Matsuzawa Y, Grabowski GA, Honke K, Taniguchi N (2001) Ectopic expression of α1,6-fucosyltransferase in mice causes steatosis in the liver and kidney accompanied by a modification of lysosomal acid lipase. Glycobiology 11:165–174. doi:10.1093/glycob/11.2.165PubMedCrossRefGoogle Scholar
  73. Wilson JR, Williams D, Schachter H (1976) The control of glycoprotein synthesis: N-acetylglucosamine linkage to a mannose residue as a signal for the attachment of L-fucose to the asparagine-linked N-acetylglucosamine residue of glycopeptide from alpha1-acid glycoprotein. Biochem Biophys Res Commun 72:909–916PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  • Hideyuki Ihara
    • 1
  • Hiroki Tsukamoto
    • 1
  • Jianguo Gu
    • 2
  • Eiji Miyoshi
    • 3
  • Naoyuki Taniguchi
    • 4
  • Yoshitaka Ikeda
    • 1
  1. 1.Division of Molecular Cell Biology, Department of Biomolecular Sciences, Faculty of MedicineSaga UniversitySagaJapan
  2. 2.Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and GlycobiologyTohoku Pharmaceutical UniversityAoba-kuJapan
  3. 3.Department of Molecular Biochemistry and Clinical InvestigationOsaka University Graduate School of MedicineSuitaJapan
  4. 4.Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research ClusterRIKENWako, SaitamaJapan

Personalised recommendations