Skip to main content

Mannosyl (Beta-1,4-)-Glycoprotein Beta-1,4-N-Acetylglucosaminyltransferase (MGAT3); β1,4-N-Acetylglucosaminyltransferase III (GnT-III, GlcNAcT-III)

  • Reference work entry
  • First Online:
Handbook of Glycosyltransferases and Related Genes

Abstract

β1,4-N-Acetylglucosaminyltransferase III (β-1,4-mannosyl-glycoprotein β1,4-N-acetylglucosaminyltransferase: EC 2.4.1.144) catalyzes the transfer of GlcNAc to the core β-mannose residue of N-glycans with β1,4-linkage (Schachter 1986). The resulting β1,4-linked GlcNAc is referred to as a bisecting GlcNAc and plays a regulatory role(s) in the biosynthesis of complex and hybrid types of the oligosaccharides. The addition of the bisecting GlcNAc residue to the core β-mannose by the enzyme prevents the actions of other GlcNAc-transferases that serve to form multiantennary sugar chains, therefore leading to decrease in branch formation of N-glycans. It has been considered that this glycosyltransferase is one of the key enzymes in the N-glycan biosynthesis, because of such a unique regulatory function of the enzyme product. The relatively high levels of the activity were found in kidney and brain of mammals (Nishikawa et al. 1988b). Consistent with this distribution of the enzyme, various N-glycans carrying the bisecting GlcNAc, bisected sugar chains, were identified in these tissues (Nakakita et al. 1998; Shimizu et al. 1993; Yamashita et al. 1986, 1983). Expression of the enzyme is enhanced during hepatocarcinogenesis, while the activity is nearly undetectable in normal liver (Narasimhan et al. 1988; Nishikawa et al. 1988a; Miyoshi et al. 1993). Because expression of the enzyme appears to lead to remarkable structural alteration of the sugar chains on the cell surface, it seems that the enzyme is associated with various biological events such as differentiation and carcinogenesis via regulating functions of some glycoproteins such as receptors and adhesion molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akama R, Sato Y, Kariya Y, Isaji T, Fukuda T, Lu L, Taniguchi N, Ozawa M, Gu J (2008) N-Acetylglucosaminyltransferase III expression is regulated by cell-cell adhesion via the E-cadherin-catenin-actin complex. Proteomics 8:3221–3228

    Article  CAS  PubMed  Google Scholar 

  • Akasaka-Manya K, Manya H, Sakurai Y, Wojczyk BS, Kozutsumi Y, Saito Y, Taniguchi N, Murayama S, Spitalnik SL, Endo T (2010) Protective effect of N-glycan bisecting GlcNAc residues on beta-amyloid production in Alzheimer’s disease. Glycobiology 20:99–106. doi:10.1093/glycob/cwp152

    Article  CAS  PubMed  Google Scholar 

  • Allen SD, Tsai D, Schachter H (1984) Control of glycoprotein synthesis. The in vitro synthesis by hen oviduct membrane preparations of hybrid asparagine-linked oligosaccharides containing 5 mannose residues. J Biol Chem 259:6984–6990

    CAS  PubMed  Google Scholar 

  • Bendiak B, Schachter H (1987) Control of glycoprotein synthesis. Kinetic mechanism, substrate specificity, and inhibition characteristics of UDP-N-acetylglucosamine:alpha-d-mannoside beta 1-2 N-acetylglucosaminyltransferase II from rat liver. J Biol Chem 262:5784–5790

    CAS  PubMed  Google Scholar 

  • Bhattacharyya R, Bhaumik M, Raju TS, Stanley P (2002) Truncated, inactive N-acetylglucosaminyltransferase III (GlcNAc-TIII) induces neurological and other traits absent in mice that lack GlcNAc-TIII. J Biol Chem 277:26300–26309. doi:10.1074/jbc.M202276200

    Article  CAS  PubMed  Google Scholar 

  • Bhaumik M, Seldin MF, Stanley P (1995) Cloning and chromosomal mapping of the mouse Mgat3 gene encoding N-acetylglucosaminyltransferase III. Gene 164:295–300

    Article  CAS  PubMed  Google Scholar 

  • Bhaumik M, Harris T, Sundaram S, Johnson L, Guttenplan J, Rogler C, Stanley P (1998) Progression of hepatic neoplasms is severely retarded in mice lacking the bisecting N-acetylglucosamine on N-glycans: evidence for a glycoprotein factor that facilitates hepatic tumor progression. Cancer Res 58:2881–2887

    CAS  PubMed  Google Scholar 

  • Brockhausen I, Carver JP, Schachter H (1988) Control of glycoprotein synthesis. The use of oligosaccharide substrates and HPLC to study the sequential pathway for N-acetylglucosaminyltransferases I, II, III, IV, V, and VI in the biosynthesis of highly branched N-glycans by hen oviduct membranes. Biochem Cell Biol 66:1134–1151

    Article  CAS  PubMed  Google Scholar 

  • Fiala M, Liu PT, Espinosa-Jeffrey A, Rosenthal MJ, Bernard G, Ringman JM, Sayre J, Zhang L, Zaghi J, Dejbakhsh S, Chiang B, Hui J, Mahanian M, Baghaee A, Hong P, Cashman J (2007) Innate immunity and transcription of MGAT-III and Toll-like receptors in Alzheimer’s disease patients are improved by bisdemethoxycurcumin. Proc Natl Acad Sci USA 104:12849–12854. doi:10.1073/pnas.0701267104

    Article  CAS  PubMed  Google Scholar 

  • Fiala M, Mahanian M, Rosenthal M, Mizwicki MT, Tse E, Cho T, Sayre J, Weitzman R, Porter V (2011) MGAT3 mRNA: a biomarker for prognosis and therapy of Alzheimer’s disease by vitamin D and curcuminoids. J Alzheimers Dis 25:135–144. doi:10.3233/JAD-2011-101950

    CAS  PubMed  Google Scholar 

  • Fujimura T, Kurome M, Murakami H, Takahagi Y, Matsunami K, Shimanuki S, Suzuki K, Miyagawa S, Shirakura R, Shigehisa T, Nagashima H (2004) Cloning of the transgenic pigs expressing human decay accelerating factor and N-acetylglucosaminyltransferase III. Cloning Stem Cells 6:294–301. doi:10.1089/clo.2004.6.294

    Article  CAS  PubMed  Google Scholar 

  • Fujita T, Machida K, Matsumoto Y, Saito T, Sato N, Takahagi Y, Murakami H, Miyagawa S, Shirakura R, Taniguchi N (2003) Cynomolgus monkey did not hyperacutely reject skin xenograft of N-acetylglucosaminyltransferase III gene transgenic pig. Transplant Proc 35:518

    Article  CAS  PubMed  Google Scholar 

  • Fujita T, Miyagawa S, Ezoe K, Saito T, Sato N, Takahagi Y, Murakami H, Matsunami K, Shirakura R, Taniguchi N (2004) Skin graft of double transgenic pigs of N-acetylglucosaminyltransferase III (GnT-III) and DAF (CD55) genes survived in cynomolgus monkey for 31 days. Transpl Immunol 13:259–264. doi:10.1016/j.trim.2004.08.001

    Article  CAS  PubMed  Google Scholar 

  • Fukuta K, Abe R, Yokomatsu T, Omae F, Asanagi M, Makino T (2000) Control of bisecting GlcNAc addition to N-linked sugar chains. J Biol Chem 275:23456–23461. doi:10.1074/jbc.M002693200

    Article  CAS  PubMed  Google Scholar 

  • Galili U (2001) The alpha-Gal epitope (Galalpha1-3Galbeta1-4GlcNAc-R) in xenotransplantation. Biochimie 83:557–563

    Article  CAS  PubMed  Google Scholar 

  • Garner OB, Baum LG (2008) Galectin-glycan lattices regulate cell-surface glycoprotein organization and signalling. Biochem Soc Trans 36:1472–1477. doi:10.1042/BST0361472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gleeson PA, Schachter H (1983) Control of glycoprotein synthesis. J Biol Chem 258:6162–6173

    CAS  PubMed  Google Scholar 

  • Gu J, Taniguchi N (2008) Potential of N-glycan in cell adhesion and migration as either a positive or negative regulator. Cell Adh Migr 2:243–245

    Article  PubMed  Google Scholar 

  • Gu J, Sato Y, Kariya Y, Isaji T, Taniguchi N, Fukuda T (2009) A mutual regulation between cell-cell adhesion and N-glycosylation: implication of the bisecting GlcNAc for biological functions. J Proteome Res 8:431–435

    Article  CAS  PubMed  Google Scholar 

  • Gu J, Isaji T, Xu Q, Kariya Y, Gu W, Fukuda T, Du Y (2012) Potential roles of N-glycosylation in cell adhesion. Glycoconj J 29:599–607

    Article  CAS  PubMed  Google Scholar 

  • Ihara Y, Nishikawa A, Tohma T, Soejima H, Niikawa N, Taniguchi N (1993) cDNA cloning, expression, and chromosomal localization of human N-acetylglucosaminyltransferase III (GnT-III). J Biochem 113:692–698

    CAS  PubMed  Google Scholar 

  • Ihara Y, Sakamoto Y, Mihara M, Shimizu K, Taniguchi N (1997) Overexpression of N-acetylglucosaminyltransferase III disrupts the tyrosine phosphorylation of Trk with resultant signaling dysfunction in PC12 cells treated with nerve growth factor. J Biol Chem 272:9629–9634

    Article  CAS  PubMed  Google Scholar 

  • Ihara Y, Yoshimura M, Miyoshi E, Nishikawa A, Sultan AS, Toyosawa S, Ohnishi A, Suzuki M, Yamamura K, Ijuhin N, Taniguchi N (1998) Ectopic expression of N-acetylglucosaminyltransferase III in transgenic hepatocytes disrupts apolipoprotein B secretion and induces aberrant cellular morphology with lipid storage. Proc Natl Acad Sci USA 95:2526–2530

    Article  CAS  PubMed  Google Scholar 

  • Ihara H, Ikeda Y, Koyota S, Endo T, Honke K, Taniguchi N (2002) A catalytically inactive beta 1,4-N-acetylglucosaminyltransferase III (GnT-III) behaves as a dominant negative GnT-III inhibitor. Eur J Biochem 269:193–201

    Article  CAS  PubMed  Google Scholar 

  • Iijima J, Zhao Y, Isaji T, Kameyama A, Nakaya S, Wang X, Ihara H, Cheng X, Nakagawa T, Miyoshi E, Kondo A, Narimatsu H, Taniguchi N, Gu J (2006) Cell-cell interaction-dependent regulation of N-acetylglucosaminyltransferase III and the bisected N-glycans in GE11 epithelial cells: involvement of E-cadherin-mediated cell adhesion. J Biol Chem 281:13038–13046

    Article  CAS  PubMed  Google Scholar 

  • Ikeda Y, Koyota S, Ihara H, Yamaguchi Y, Korekane H, Tsuda T, Sasai K, Taniguchi N (2000) Kinetic basis for the donor nucleotide-sugar specificity of beta1, 4-N-acetylglucosaminyltransferase III. J Biochem 128:609–619

    Article  CAS  PubMed  Google Scholar 

  • Isaji T, Gu J, Nishiuchi R, Zhao Y, Takahashi M, Miyoshi E, Honke K, Sekiguchi K, Taniguchi N (2004) Introduction of bisecting GlcNAc into integrin alpha5beta1 reduces ligand binding and down-regulates cell adhesion and cell migration. J Biol Chem 279:19747–19754. doi:10.1074/jbc.M311627200

    Article  CAS  PubMed  Google Scholar 

  • Kariya Y, Kato R, Itoh S, Fukuda T, Shibukawa Y, Sanzen N, Sekiguchi K, Wada Y, Kawasaki N, Gu J (2008) N-Glycosylation of laminin-332 regulates its biological functions. A novel function of the bisecting GlcNAc. J Biol Chem 283:33036–33045. doi:10.1074/jbc.M804526200

    Article  CAS  PubMed  Google Scholar 

  • Kariya Y, Kawamura C, Tabei T, Gu J (2010) Bisecting GlcNAc residues on laminin-332 down-regulate galectin-3-dependent keratinocyte motility. J Biol Chem 285:3330–3340. doi:10.1074/jbc.M109.038836

    Article  CAS  PubMed  Google Scholar 

  • Kitada T, Miyoshi E, Noda K, Higashiyama S, Ihara H, Matsuura N, Hayashi N, Kawata S, Matsuzawa Y, Taniguchi N (2001) The addition of bisecting N-acetylglucosamine residues to E-cadherin down-regulates the tyrosine phosphorylation of beta-catenin. J Biol Chem 276:475–480. doi:10.1074/jbc.M006689200

    Article  CAS  PubMed  Google Scholar 

  • Kobata A, Amano J (2005) Altered glycosylation of proteins produced by malignant cells, and application for the diagnosis and immunotherapy of tumours. Immunol Cell Biol 83:429–439. doi:10.1111/j.1440-1711.2005.01351.x

    Article  CAS  PubMed  Google Scholar 

  • Komoda H, Miyagawa S, Omori T, Takahagi Y, Murakami H, Shigehisa T, Ito T, Matsuda H, Shirakura R (2005) Survival of adult islet grafts from transgenic pigs with N-acetylglucosaminyltransferase-III (GnT-III) in cynomolgus monkeys. Xenotransplantation 12:209–216. doi:10.1111/j.1399-3089.2005.00206.x

    Article  PubMed  Google Scholar 

  • Koyota S, Ikeda Y, Miyagawa S, Ihara H, Koma M, Honke K, Shirakura R, Taniguchi N (2001) Down-regulation of the alpha-Gal epitope expression in N-glycans of swine endothelial cells by transfection with the N-acetylglucosaminyltransferase III gene. Modulation of the biosynthesis of terminal structures by a bisecting GlcNAc. J Biol Chem 276:32867–32874. doi:10.1074/jbc.M102371200

    Article  CAS  PubMed  Google Scholar 

  • Li W, Takahashi M, Shibukawa Y, Yokoe S, Gu J, Miyoshi E, Honke K, Ikeda Y, Taniguchi N (2007) Introduction of bisecting GlcNAc in N-glycans of adenylyl cyclase III enhances its activity. Glycobiology 17:655–662. doi:10.1093/glycob/cwm022

    Article  CAS  PubMed  Google Scholar 

  • Miwa HE, Song Y, Alvarez R, Cummings RD, Stanley P (2012) The bisecting GlcNAc in cell growth control and tumor progression. Glycoconj J 29:609–618. doi:10.1007/s10719-012-9373-6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miyagawa S, Nakai R, Yamada M, Tanemura M, Ikeda Y, Taniguchi N, Shirakura R (1999a) Regulation of natural killer cell-mediated swine endothelial cell lysis through genetic remodeling of a glycoantigen. J Biochem 126:1067–1073

    Article  CAS  PubMed  Google Scholar 

  • Miyagawa S, Tanemura M, Koyota S, Koma M, Ikeda Y, Shirakura R, Taniguchi N (1999b) Masking and reduction of the Galactose-alpha1,3-Galactose (alpha-Gal) epitope, the major xenoantigen in swine, by the glycosyltransferase gene transfection. Biochem Biophys Res Commun 264:611–614. doi:10.1006/bbrc.1999.1327

    Article  CAS  PubMed  Google Scholar 

  • Miyagawa S, Murakami H, Takahagi Y, Nakai R, Yamada M, Murase A, Koyota S, Koma M, Matsunami K, Fukuta D, Fujimura T, Shigehisa T, Okabe M, Nagashima H, Shirakura R, Taniguchi N (2001) Remodeling of the major pig xenoantigen by N-acetylglucosaminyltransferase III in transgenic pig. J Biol Chem 276:39310–39319. doi:10.1074/jbc.M104359200

    Article  CAS  PubMed  Google Scholar 

  • Miyagawa S, Ueno T, Nagashima H, Takama Y, Fukuzawa M (2012) Carbohydrate antigens. Curr Opin Organ Transplant 17:174–179. doi:10.1097/MOT.0b013e3283508189

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi E, Nishikawa A, Ihara Y, Gu J, Sugiyama T, Hayashi N, Fusamoto H, Kamada T, Taniguchi N (1993) N-acetylglucosaminyltransferase III and V messenger RNA levels in LEC rats during hepatocarcinogenesis. Cancer Res 53:3899–3902

    CAS  PubMed  Google Scholar 

  • Miyoshi E, Ihara Y, Hayashi N, Fusamoto H, Kamada T, Taniguchi N (1995) Transfection of N-acetylglucosaminyltransferase III gene suppresses expression of hepatitis B virus in a human hepatoma cell line, HB611. J Biol Chem 270:28311–28315

    Article  CAS  PubMed  Google Scholar 

  • Nagai K, Ihara Y, Wada Y, Taniguchi N (1997) N-glycosylation is requisite for the enzyme activity and Golgi retention of N-acetylglucosaminyltransferase III. Glycobiology 7:769–776

    Article  CAS  PubMed  Google Scholar 

  • Nakakita S, Natsuka S, Ikenaka K, Hase S (1998) Development-dependent expression of complex-type sugar chains specific to mouse brain. J Biochem 123:1164–1168

    Article  CAS  PubMed  Google Scholar 

  • Narasimhan S (1982) Control of glycoprotein synthesis. UDP-GlcNAc:glycopeptide beta 4-N-acetylglucosaminyltransferase III, an enzyme in hen oviduct which adds GlcNAc in beta 1-4 linkage to the beta-linked mannose of the trimannosyl core of N-glycosyl oligosaccharides. J Biol Chem 257:10235–10242

    CAS  PubMed  Google Scholar 

  • Narasimhan S, Schachter H, Rajalakshmi S (1988) Expression of N-acetylglucosaminyltransferase III in hepatic nodules during rat liver carcinogenesis promoted by orotic acid. J Biol Chem 263:1273–1281

    CAS  PubMed  Google Scholar 

  • Nishikawa A, Fujii S, Sugiyama T, Hayashi N, Taniguchi N (1988a) High expression of an N-acetylglucosaminyltransferase III in 3′-methyl DAB-induced hepatoma and ascites hepatoma. Biochem Biophys Res Commun 152:107–112

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa A, Fujii S, Sugiyama T, Taniguchi N (1988b) A method for the determination of N-acetylglucosaminyltransferase III activity in rat tissues involving HPLC. Anal Biochem 170:349–354

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa A, Ihara Y, Hatakeyama M, Kangawa K, Taniguchi N (1992) Purification, cDNA cloning, and expression of UDP-N-acetylglucosamine: beta-d-mannoside beta-1,4N-acetylglucosaminyltransferase III from rat kidney. J Biol Chem 267:18199–18204

    CAS  PubMed  Google Scholar 

  • Okada T, Ihara H, Ito R, Taniguchi N, Ikeda Y (2009) Bidirectional N-acetylglucosamine transfer mediated by beta-1,4-N-acetylglucosaminyltransferase III. Glycobiology 19:368–374. doi:10.1093/glycob/cwn145

    Article  CAS  PubMed  Google Scholar 

  • Okada T, Ihara H, Ito R, Nakano M, Matsumoto K, Yamaguchi Y, Taniguchi N, Ikeda Y (2010) N-Glycosylation engineering of lepidopteran insect cells by the introduction of the beta1,4-N-acetylglucosaminyltransferase III gene. Glycobiology 20:1147–1159. doi:10.1093/glycob/cwq080

    Article  CAS  PubMed  Google Scholar 

  • Pinho SS, Seruca R, Gartner F, Yamaguchi Y, Gu J, Taniguchi N, Reis CA (2011) Modulation of E-cadherin function and dysfunction by N-glycosylation. Cell Mol Life Sci 68:1011–1020. doi:10.1007/s00018-010-0595-0

    Article  CAS  PubMed  Google Scholar 

  • Pinho SS, Oliveira P, Cabral J, Carvalho S, Huntsman D, Gartner F, Seruca R, Reis CA, Oliveira C (2012) Loss and recovery of Mgat3 and GnT-III Mediated E-cadherin N-glycosylation is a mechanism involved in epithelial-mesenchymal-epithelial transitions. PLoS One 7:e33191. doi:10.1371/journal.pone.0033191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Priatel JJ, Sarkar M, Schachter H, Marth JD (1997) Isolation, characterization and inactivation of the mouse Mgat3 gene: the bisecting N-acetylglucosamine in asparagine-linked oligosaccharides appears dispensable for viability and reproduction. Glycobiology 7:45–56

    Article  CAS  PubMed  Google Scholar 

  • Rebbaa A, Yamamoto H, Saito T, Meuillet E, Kim P, Kersey DS, Bremer EG, Taniguchi N, Moskal JR (1997) Gene transfection-mediated overexpression of beta1,4-N-acetylglucosamine bisecting oligosaccharides in glioma cell line U373 MG inhibits epidermal growth factor receptor function. J Biol Chem 272:9275–9279

    Article  CAS  PubMed  Google Scholar 

  • Sasai K, Ikeda Y, Ihara H, Honke K, Taniguchi N (2003) Caveolin-1 regulates the functional localization of N-acetylglucosaminyltransferase III within the Golgi apparatus. J Biol Chem 278:25295–25301. doi:10.1074/jbc.M301913200

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Takahashi M, Shibukawa Y, Jain SK, Hamaoka R, Miyagawa J, Yaginuma Y, Honke K, Ishikawa M, Taniguchi N (2001) Overexpression of N-acetylglucosaminyltransferase III enhances the epidermal growth factor-induced phosphorylation of ERK in HeLaS3 cells by up-regulation of the internalization rate of the receptors. J Biol Chem 276:11956–11962. doi:10.1074/jbc.M008551200

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Isaji T, Tajiri M, Yoshida-Yamamoto S, Yoshinaka T, Somehara T, Fukuda T, Wada Y, Gu J (2009) An N-glycosylation site on the beta-propeller domain of the integrin alpha5 subunit plays key roles in both its function and site-specific modification by beta1,4-N-acetylglucosaminyltransferase III. J Biol Chem 284:11873–11881. doi:10.1074/jbc.M807660200

    Article  CAS  PubMed  Google Scholar 

  • Schachter H (1986) Biosynthetic controls that determine the branching and microheterogeneity of protein-bound oligosaccharides. Biochem Cell Biol 64:163–181

    Article  CAS  PubMed  Google Scholar 

  • Schachter H, Narasimhan S, Gleeson P, Vella G (1983) Control of branching during the biosynthesis of asparagine-linked oligosaccharides. Can J Biochem Cell Biol 61:1049–1066

    Article  CAS  PubMed  Google Scholar 

  • Shimizu H, Ochiai K, Ikenaka K, Mikoshiba K, Hase S (1993) Structures of N-linked sugar chains expressed mainly in mouse brain. J Biochem 114:334–338

    CAS  PubMed  Google Scholar 

  • Stanley P (2002) Biological consequences of overexpressing or eliminating N-acetylglucosaminyltransferase-TIII in the mouse. Biochim Biophys Acta 1573:363–368

    Article  CAS  PubMed  Google Scholar 

  • Sultan AS, Miyoshi E, Ihara Y, Nishikawa A, Tsukada Y, Taniguchi N (1997) Bisecting GlcNAc structures act as negative sorting signals for cell surface glycoproteins in for skolin-treated rat hepatoma cells. J Biol Chem 272:2866–2872

    Article  CAS  PubMed  Google Scholar 

  • Takahagi Y, Fujimura T, Miyagawa S, Nagashima H, Shigehisa T, Shirakura R, Murakami H (2005) Production of alpha 1,3-galactosyltransferase gene knockout pigs expressing both human decay-accelerating factor and N-acetylglucosaminyltransferase III. Mol Reprod Dev 71:331–338. doi:10.1002/mrd.20305

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Kuroki Y, Ohtsubo K, Taniguchi N (2009) Core fucose and bisecting GlcNAc, the direct modifiers of the N-glycan core: their functions and target proteins. Carbohydr Res 344:1387–1390. doi:10.1016/j.carres.2009.04.031

    Article  CAS  PubMed  Google Scholar 

  • Tanemura M, Miyagawa S, Ihara Y, Matsuda H, Shirakura R, Taniguchi N (1997) Significant downregulation of the major swine xenoantigen by N-acetylglucosaminyltransferase III gene transfection. Biochem Biophys Res Commun 235:359–364. doi:10.1006/bbrc.1997.6784

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi N, Korekane H (2011) Branched N-glycans and their implications for cell adhesion, signaling and clinical applications for cancer biomarkers and in therapeutics. BMB Rep 44:772–781

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi N, Nishikawa A, Fujii S, Gu JG (1989) Glycosyltransferase assays using pyridylaminated acceptors: N-acetylglucosaminyltransferase III, IV, and V. Methods Enzymol 179:397–408

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi N, Miyoshi E, Ko JH, Ikeda Y, Ihara Y (1999) Implication of N-acetylglucosaminyltransferases III and V in cancer: gene regulation and signaling mechanism. Biochim Biophys Acta 1455:287–300

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Akama R, Isaji T, Lu Y, Hashimoto H, Kariya Y, Fukuda T, Du Y, Gu J (2011) Wnt/β-catenin signaling down-regulates N-Acetylglucosaminyltransferase III expression: the implication of two mutually exclusive pathways for regulation. J Biol Chem 286:4310–4318

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Isaji T, Lu Y, Gu W, Kondo M, Fukuda T, Du Y, Gu J (2012) Roles of N-acetylglucosaminyltransferase III in epithelial-to-mesenchymal transition induced by TGF-β1 in epithelial cell lines. J Biol Chem 287:16563–16574

    Article  CAS  PubMed  Google Scholar 

  • Yamashita K, Hitoi A, Tateishi N, Higashi T, Sakamoto Y, Kobata A (1983) Organ-specific difference in the sugar chains of gamma-glutamyltranspeptidase. Arch Biochem Biophys 225:993–996

    Article  CAS  PubMed  Google Scholar 

  • Yamashita K, Hitoi A, Matsuda Y, Miura T, Katunuma N, Kobata A (1986) Structures of sugar chains of human kidney gamma-glutamyltranspeptidase. J Biochem 99:55–62

    CAS  PubMed  Google Scholar 

  • Yang X, Bhaumik M, Bhattacharyya R, Gong S, Rogler CE, Stanley P (2000) New evidence for an extra-hepatic role of N-acetylglucosaminyltransferase III in the progression of diethylnitrosamine-induced liver tumors in mice. Cancer Res 60:3313–3319

    CAS  PubMed  Google Scholar 

  • Yang X, Tang J, Rogler CE, Stanley P (2003) Reduced hepatocyte proliferation is the basis of retarded liver tumor progression and liver regeneration in mice lacking N-acetylglucosaminyltransferase III. Cancer Res 63:7753–7759

    CAS  PubMed  Google Scholar 

  • Yoshimura M, Nishikawa A, Ihara Y, Taniguchi S, Taniguchi N (1995) Suppression of lung metastasis of B16 mouse melanoma by N-acetylglucosaminyltransferase III gene transfection. Proc Natl Acad Sci USA 92:8754–8758

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura M, Ihara Y, Ohnishi A, Ijuhin N, Nishiura T, Kanakura Y, Matsuzawa Y, Taniguchi N (1996a) Bisecting N-acetylglucosamine on K562 cells suppresses natural killer cytotoxicity and promotes spleen colonization. Cancer Res 56:412–418

    CAS  PubMed  Google Scholar 

  • Yoshimura M, Ihara Y, Matsuzawa Y, Taniguchi N (1996b) Aberrant glycosylation of E-cadherin enhances cell-cell binding to suppress metastasis. J Biol Chem 271:13811–13815

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura M, Ihara Y, Nishiura T, Okajima Y, Ogawa M, Yoshida H, Suzuki M, Yamamura K, Kanakura Y, Matsuzawa Y, Taniguchi N (1998) Bisecting GlcNAc structure is implicated in suppression of stroma-dependent haemopoiesis in transgenic mice expressing N-acetylglucosaminyltransferase III. Biochem J 331(Pt 3):733–742

    CAS  PubMed  Google Scholar 

  • Zhao Y, Nakagawa T, Itoh S, Inamori K, Isaji T, Kariya Y, Kondo A, Miyoshi E, Miyazaki K, Kawasaki N, Taniguchi N, Gu J (2006) N-acetylglucosaminyltransferase III antagonizes the effect of N-acetylglucosaminyltransferase V on alpha3beta1 integrin-mediated cell migration. J Biol Chem 281:32122–32130. doi:10.1074/jbc.M607274200

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Ikeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this entry

Cite this entry

Ikeda, Y., Ihara, H., Tsukamoto, H., Gu, J., Taniguchi, N. (2014). Mannosyl (Beta-1,4-)-Glycoprotein Beta-1,4-N-Acetylglucosaminyltransferase (MGAT3); β1,4-N-Acetylglucosaminyltransferase III (GnT-III, GlcNAcT-III). In: Taniguchi, N., Honke, K., Fukuda, M., Narimatsu, H., Yamaguchi, Y., Angata, T. (eds) Handbook of Glycosyltransferases and Related Genes. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54240-7_58

Download citation

Publish with us

Policies and ethics