Mannosyl (Beta-1,4-)-Glycoprotein Beta-1,4-N-Acetylglucosaminyltransferase (MGAT3); β1,4-N-Acetylglucosaminyltransferase III (GnT-III, GlcNAcT-III)

  • Yoshitaka Ikeda
  • Hideyuki Ihara
  • Hiroki Tsukamoto
  • Jianguo Gu
  • Naoyuki Taniguchi
Reference work entry


β1,4-N-Acetylglucosaminyltransferase III (β-1,4-mannosyl-glycoprotein β1,4-N-acetylglucosaminyltransferase: EC catalyzes the transfer of GlcNAc to the core β-mannose residue of N-glycans with β1,4-linkage (Schachter 1986). The resulting β1,4-linked GlcNAc is referred to as a bisecting GlcNAc and plays a regulatory role(s) in the biosynthesis of complex and hybrid types of the oligosaccharides. The addition of the bisecting GlcNAc residue to the core β-mannose by the enzyme prevents the actions of other GlcNAc-transferases that serve to form multiantennary sugar chains, therefore leading to decrease in branch formation of N-glycans. It has been considered that this glycosyltransferase is one of the key enzymes in the N-glycan biosynthesis, because of such a unique regulatory function of the enzyme product. The relatively high levels of the activity were found in kidney and brain of mammals (Nishikawa et al. 1988b). Consistent with this distribution of the enzyme, various N-glycans carrying the bisecting GlcNAc, bisected sugar chains, were identified in these tissues (Nakakita et al. 1998; Shimizu et al. 1993; Yamashita et al. 1986, 1983). Expression of the enzyme is enhanced during hepatocarcinogenesis, while the activity is nearly undetectable in normal liver (Narasimhan et al. 1988; Nishikawa et al. 1988a; Miyoshi et al. 1993). Because expression of the enzyme appears to lead to remarkable structural alteration of the sugar chains on the cell surface, it seems that the enzyme is associated with various biological events such as differentiation and carcinogenesis via regulating functions of some glycoproteins such as receptors and adhesion molecules.


Sugar Chain Branch Formation Column Chromatographic Technique Lectin Blot Analysis Active Recombinant Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akama R, Sato Y, Kariya Y, Isaji T, Fukuda T, Lu L, Taniguchi N, Ozawa M, Gu J (2008) N-Acetylglucosaminyltransferase III expression is regulated by cell-cell adhesion via the E-cadherin-catenin-actin complex. Proteomics 8:3221–3228PubMedCrossRefGoogle Scholar
  2. Akasaka-Manya K, Manya H, Sakurai Y, Wojczyk BS, Kozutsumi Y, Saito Y, Taniguchi N, Murayama S, Spitalnik SL, Endo T (2010) Protective effect of N-glycan bisecting GlcNAc residues on beta-amyloid production in Alzheimer’s disease. Glycobiology 20:99–106. doi:10.1093/glycob/cwp152PubMedCrossRefGoogle Scholar
  3. Allen SD, Tsai D, Schachter H (1984) Control of glycoprotein synthesis. The in vitro synthesis by hen oviduct membrane preparations of hybrid asparagine-linked oligosaccharides containing 5 mannose residues. J Biol Chem 259:6984–6990PubMedGoogle Scholar
  4. Bendiak B, Schachter H (1987) Control of glycoprotein synthesis. Kinetic mechanism, substrate specificity, and inhibition characteristics of UDP-N-acetylglucosamine:alpha-d-mannoside beta 1-2 N-acetylglucosaminyltransferase II from rat liver. J Biol Chem 262:5784–5790PubMedGoogle Scholar
  5. Bhattacharyya R, Bhaumik M, Raju TS, Stanley P (2002) Truncated, inactive N-acetylglucosaminyltransferase III (GlcNAc-TIII) induces neurological and other traits absent in mice that lack GlcNAc-TIII. J Biol Chem 277:26300–26309. doi:10.1074/jbc.M202276200PubMedCrossRefGoogle Scholar
  6. Bhaumik M, Seldin MF, Stanley P (1995) Cloning and chromosomal mapping of the mouse Mgat3 gene encoding N-acetylglucosaminyltransferase III. Gene 164:295–300PubMedCrossRefGoogle Scholar
  7. Bhaumik M, Harris T, Sundaram S, Johnson L, Guttenplan J, Rogler C, Stanley P (1998) Progression of hepatic neoplasms is severely retarded in mice lacking the bisecting N-acetylglucosamine on N-glycans: evidence for a glycoprotein factor that facilitates hepatic tumor progression. Cancer Res 58:2881–2887PubMedGoogle Scholar
  8. Brockhausen I, Carver JP, Schachter H (1988) Control of glycoprotein synthesis. The use of oligosaccharide substrates and HPLC to study the sequential pathway for N-acetylglucosaminyltransferases I, II, III, IV, V, and VI in the biosynthesis of highly branched N-glycans by hen oviduct membranes. Biochem Cell Biol 66:1134–1151PubMedCrossRefGoogle Scholar
  9. Fiala M, Liu PT, Espinosa-Jeffrey A, Rosenthal MJ, Bernard G, Ringman JM, Sayre J, Zhang L, Zaghi J, Dejbakhsh S, Chiang B, Hui J, Mahanian M, Baghaee A, Hong P, Cashman J (2007) Innate immunity and transcription of MGAT-III and Toll-like receptors in Alzheimer’s disease patients are improved by bisdemethoxycurcumin. Proc Natl Acad Sci USA 104:12849–12854. doi:10.1073/pnas.0701267104PubMedCrossRefGoogle Scholar
  10. Fiala M, Mahanian M, Rosenthal M, Mizwicki MT, Tse E, Cho T, Sayre J, Weitzman R, Porter V (2011) MGAT3 mRNA: a biomarker for prognosis and therapy of Alzheimer’s disease by vitamin D and curcuminoids. J Alzheimers Dis 25:135–144. doi:10.3233/JAD-2011-101950PubMedGoogle Scholar
  11. Fujimura T, Kurome M, Murakami H, Takahagi Y, Matsunami K, Shimanuki S, Suzuki K, Miyagawa S, Shirakura R, Shigehisa T, Nagashima H (2004) Cloning of the transgenic pigs expressing human decay accelerating factor and N-acetylglucosaminyltransferase III. Cloning Stem Cells 6:294–301. doi:10.1089/clo.2004.6.294PubMedCrossRefGoogle Scholar
  12. Fujita T, Machida K, Matsumoto Y, Saito T, Sato N, Takahagi Y, Murakami H, Miyagawa S, Shirakura R, Taniguchi N (2003) Cynomolgus monkey did not hyperacutely reject skin xenograft of N-acetylglucosaminyltransferase III gene transgenic pig. Transplant Proc 35:518PubMedCrossRefGoogle Scholar
  13. Fujita T, Miyagawa S, Ezoe K, Saito T, Sato N, Takahagi Y, Murakami H, Matsunami K, Shirakura R, Taniguchi N (2004) Skin graft of double transgenic pigs of N-acetylglucosaminyltransferase III (GnT-III) and DAF (CD55) genes survived in cynomolgus monkey for 31 days. Transpl Immunol 13:259–264. doi:10.1016/j.trim.2004.08.001PubMedCrossRefGoogle Scholar
  14. Fukuta K, Abe R, Yokomatsu T, Omae F, Asanagi M, Makino T (2000) Control of bisecting GlcNAc addition to N-linked sugar chains. J Biol Chem 275:23456–23461. doi:10.1074/jbc.M002693200PubMedCrossRefGoogle Scholar
  15. Galili U (2001) The alpha-Gal epitope (Galalpha1-3Galbeta1-4GlcNAc-R) in xenotransplantation. Biochimie 83:557–563PubMedCrossRefGoogle Scholar
  16. Garner OB, Baum LG (2008) Galectin-glycan lattices regulate cell-surface glycoprotein organization and signalling. Biochem Soc Trans 36:1472–1477. doi:10.1042/BST0361472PubMedCentralPubMedCrossRefGoogle Scholar
  17. Gleeson PA, Schachter H (1983) Control of glycoprotein synthesis. J Biol Chem 258:6162–6173PubMedGoogle Scholar
  18. Gu J, Taniguchi N (2008) Potential of N-glycan in cell adhesion and migration as either a positive or negative regulator. Cell Adh Migr 2:243–245PubMedCrossRefGoogle Scholar
  19. Gu J, Sato Y, Kariya Y, Isaji T, Taniguchi N, Fukuda T (2009) A mutual regulation between cell-cell adhesion and N-glycosylation: implication of the bisecting GlcNAc for biological functions. J Proteome Res 8:431–435PubMedCrossRefGoogle Scholar
  20. Gu J, Isaji T, Xu Q, Kariya Y, Gu W, Fukuda T, Du Y (2012) Potential roles of N-glycosylation in cell adhesion. Glycoconj J 29:599–607PubMedCrossRefGoogle Scholar
  21. Ihara Y, Nishikawa A, Tohma T, Soejima H, Niikawa N, Taniguchi N (1993) cDNA cloning, expression, and chromosomal localization of human N-acetylglucosaminyltransferase III (GnT-III). J Biochem 113:692–698PubMedGoogle Scholar
  22. Ihara Y, Sakamoto Y, Mihara M, Shimizu K, Taniguchi N (1997) Overexpression of N-acetylglucosaminyltransferase III disrupts the tyrosine phosphorylation of Trk with resultant signaling dysfunction in PC12 cells treated with nerve growth factor. J Biol Chem 272:9629–9634PubMedCrossRefGoogle Scholar
  23. Ihara Y, Yoshimura M, Miyoshi E, Nishikawa A, Sultan AS, Toyosawa S, Ohnishi A, Suzuki M, Yamamura K, Ijuhin N, Taniguchi N (1998) Ectopic expression of N-acetylglucosaminyltransferase III in transgenic hepatocytes disrupts apolipoprotein B secretion and induces aberrant cellular morphology with lipid storage. Proc Natl Acad Sci USA 95:2526–2530PubMedCrossRefGoogle Scholar
  24. Ihara H, Ikeda Y, Koyota S, Endo T, Honke K, Taniguchi N (2002) A catalytically inactive beta 1,4-N-acetylglucosaminyltransferase III (GnT-III) behaves as a dominant negative GnT-III inhibitor. Eur J Biochem 269:193–201PubMedCrossRefGoogle Scholar
  25. Iijima J, Zhao Y, Isaji T, Kameyama A, Nakaya S, Wang X, Ihara H, Cheng X, Nakagawa T, Miyoshi E, Kondo A, Narimatsu H, Taniguchi N, Gu J (2006) Cell-cell interaction-dependent regulation of N-acetylglucosaminyltransferase III and the bisected N-glycans in GE11 epithelial cells: involvement of E-cadherin-mediated cell adhesion. J Biol Chem 281:13038–13046PubMedCrossRefGoogle Scholar
  26. Ikeda Y, Koyota S, Ihara H, Yamaguchi Y, Korekane H, Tsuda T, Sasai K, Taniguchi N (2000) Kinetic basis for the donor nucleotide-sugar specificity of beta1, 4-N-acetylglucosaminyltransferase III. J Biochem 128:609–619PubMedCrossRefGoogle Scholar
  27. Isaji T, Gu J, Nishiuchi R, Zhao Y, Takahashi M, Miyoshi E, Honke K, Sekiguchi K, Taniguchi N (2004) Introduction of bisecting GlcNAc into integrin alpha5beta1 reduces ligand binding and down-regulates cell adhesion and cell migration. J Biol Chem 279:19747–19754. doi:10.1074/jbc.M311627200PubMedCrossRefGoogle Scholar
  28. Kariya Y, Kato R, Itoh S, Fukuda T, Shibukawa Y, Sanzen N, Sekiguchi K, Wada Y, Kawasaki N, Gu J (2008) N-Glycosylation of laminin-332 regulates its biological functions. A novel function of the bisecting GlcNAc. J Biol Chem 283:33036–33045. doi:10.1074/jbc.M804526200PubMedCrossRefGoogle Scholar
  29. Kariya Y, Kawamura C, Tabei T, Gu J (2010) Bisecting GlcNAc residues on laminin-332 down-regulate galectin-3-dependent keratinocyte motility. J Biol Chem 285:3330–3340. doi:10.1074/jbc.M109.038836PubMedCrossRefGoogle Scholar
  30. Kitada T, Miyoshi E, Noda K, Higashiyama S, Ihara H, Matsuura N, Hayashi N, Kawata S, Matsuzawa Y, Taniguchi N (2001) The addition of bisecting N-acetylglucosamine residues to E-cadherin down-regulates the tyrosine phosphorylation of beta-catenin. J Biol Chem 276:475–480. doi:10.1074/jbc.M006689200PubMedCrossRefGoogle Scholar
  31. Kobata A, Amano J (2005) Altered glycosylation of proteins produced by malignant cells, and application for the diagnosis and immunotherapy of tumours. Immunol Cell Biol 83:429–439. doi:10.1111/j.1440-1711.2005.01351.xPubMedCrossRefGoogle Scholar
  32. Komoda H, Miyagawa S, Omori T, Takahagi Y, Murakami H, Shigehisa T, Ito T, Matsuda H, Shirakura R (2005) Survival of adult islet grafts from transgenic pigs with N-acetylglucosaminyltransferase-III (GnT-III) in cynomolgus monkeys. Xenotransplantation 12:209–216. doi:10.1111/j.1399-3089.2005.00206.xPubMedCrossRefGoogle Scholar
  33. Koyota S, Ikeda Y, Miyagawa S, Ihara H, Koma M, Honke K, Shirakura R, Taniguchi N (2001) Down-regulation of the alpha-Gal epitope expression in N-glycans of swine endothelial cells by transfection with the N-acetylglucosaminyltransferase III gene. Modulation of the biosynthesis of terminal structures by a bisecting GlcNAc. J Biol Chem 276:32867–32874. doi:10.1074/jbc.M102371200PubMedCrossRefGoogle Scholar
  34. Li W, Takahashi M, Shibukawa Y, Yokoe S, Gu J, Miyoshi E, Honke K, Ikeda Y, Taniguchi N (2007) Introduction of bisecting GlcNAc in N-glycans of adenylyl cyclase III enhances its activity. Glycobiology 17:655–662. doi:10.1093/glycob/cwm022PubMedCrossRefGoogle Scholar
  35. Miwa HE, Song Y, Alvarez R, Cummings RD, Stanley P (2012) The bisecting GlcNAc in cell growth control and tumor progression. Glycoconj J 29:609–618. doi:10.1007/s10719-012-9373-6PubMedCentralPubMedCrossRefGoogle Scholar
  36. Miyagawa S, Nakai R, Yamada M, Tanemura M, Ikeda Y, Taniguchi N, Shirakura R (1999a) Regulation of natural killer cell-mediated swine endothelial cell lysis through genetic remodeling of a glycoantigen. J Biochem 126:1067–1073PubMedCrossRefGoogle Scholar
  37. Miyagawa S, Tanemura M, Koyota S, Koma M, Ikeda Y, Shirakura R, Taniguchi N (1999b) Masking and reduction of the Galactose-alpha1,3-Galactose (alpha-Gal) epitope, the major xenoantigen in swine, by the glycosyltransferase gene transfection. Biochem Biophys Res Commun 264:611–614. doi:10.1006/bbrc.1999.1327PubMedCrossRefGoogle Scholar
  38. Miyagawa S, Murakami H, Takahagi Y, Nakai R, Yamada M, Murase A, Koyota S, Koma M, Matsunami K, Fukuta D, Fujimura T, Shigehisa T, Okabe M, Nagashima H, Shirakura R, Taniguchi N (2001) Remodeling of the major pig xenoantigen by N-acetylglucosaminyltransferase III in transgenic pig. J Biol Chem 276:39310–39319. doi:10.1074/jbc.M104359200PubMedCrossRefGoogle Scholar
  39. Miyagawa S, Ueno T, Nagashima H, Takama Y, Fukuzawa M (2012) Carbohydrate antigens. Curr Opin Organ Transplant 17:174–179. doi:10.1097/MOT.0b013e3283508189PubMedCrossRefGoogle Scholar
  40. Miyoshi E, Nishikawa A, Ihara Y, Gu J, Sugiyama T, Hayashi N, Fusamoto H, Kamada T, Taniguchi N (1993) N-acetylglucosaminyltransferase III and V messenger RNA levels in LEC rats during hepatocarcinogenesis. Cancer Res 53:3899–3902PubMedGoogle Scholar
  41. Miyoshi E, Ihara Y, Hayashi N, Fusamoto H, Kamada T, Taniguchi N (1995) Transfection of N-acetylglucosaminyltransferase III gene suppresses expression of hepatitis B virus in a human hepatoma cell line, HB611. J Biol Chem 270:28311–28315PubMedCrossRefGoogle Scholar
  42. Nagai K, Ihara Y, Wada Y, Taniguchi N (1997) N-glycosylation is requisite for the enzyme activity and Golgi retention of N-acetylglucosaminyltransferase III. Glycobiology 7:769–776PubMedCrossRefGoogle Scholar
  43. Nakakita S, Natsuka S, Ikenaka K, Hase S (1998) Development-dependent expression of complex-type sugar chains specific to mouse brain. J Biochem 123:1164–1168PubMedCrossRefGoogle Scholar
  44. Narasimhan S (1982) Control of glycoprotein synthesis. UDP-GlcNAc:glycopeptide beta 4-N-acetylglucosaminyltransferase III, an enzyme in hen oviduct which adds GlcNAc in beta 1-4 linkage to the beta-linked mannose of the trimannosyl core of N-glycosyl oligosaccharides. J Biol Chem 257:10235–10242PubMedGoogle Scholar
  45. Narasimhan S, Schachter H, Rajalakshmi S (1988) Expression of N-acetylglucosaminyltransferase III in hepatic nodules during rat liver carcinogenesis promoted by orotic acid. J Biol Chem 263:1273–1281PubMedGoogle Scholar
  46. Nishikawa A, Fujii S, Sugiyama T, Hayashi N, Taniguchi N (1988a) High expression of an N-acetylglucosaminyltransferase III in 3′-methyl DAB-induced hepatoma and ascites hepatoma. Biochem Biophys Res Commun 152:107–112PubMedCrossRefGoogle Scholar
  47. Nishikawa A, Fujii S, Sugiyama T, Taniguchi N (1988b) A method for the determination of N-acetylglucosaminyltransferase III activity in rat tissues involving HPLC. Anal Biochem 170:349–354PubMedCrossRefGoogle Scholar
  48. Nishikawa A, Ihara Y, Hatakeyama M, Kangawa K, Taniguchi N (1992) Purification, cDNA cloning, and expression of UDP-N-acetylglucosamine: beta-d-mannoside beta-1,4N-acetylglucosaminyltransferase III from rat kidney. J Biol Chem 267:18199–18204PubMedGoogle Scholar
  49. Okada T, Ihara H, Ito R, Taniguchi N, Ikeda Y (2009) Bidirectional N-acetylglucosamine transfer mediated by beta-1,4-N-acetylglucosaminyltransferase III. Glycobiology 19:368–374. doi:10.1093/glycob/cwn145PubMedCrossRefGoogle Scholar
  50. Okada T, Ihara H, Ito R, Nakano M, Matsumoto K, Yamaguchi Y, Taniguchi N, Ikeda Y (2010) N-Glycosylation engineering of lepidopteran insect cells by the introduction of the beta1,4-N-acetylglucosaminyltransferase III gene. Glycobiology 20:1147–1159. doi:10.1093/glycob/cwq080PubMedCrossRefGoogle Scholar
  51. Pinho SS, Seruca R, Gartner F, Yamaguchi Y, Gu J, Taniguchi N, Reis CA (2011) Modulation of E-cadherin function and dysfunction by N-glycosylation. Cell Mol Life Sci 68:1011–1020. doi:10.1007/s00018-010-0595-0PubMedCrossRefGoogle Scholar
  52. Pinho SS, Oliveira P, Cabral J, Carvalho S, Huntsman D, Gartner F, Seruca R, Reis CA, Oliveira C (2012) Loss and recovery of Mgat3 and GnT-III Mediated E-cadherin N-glycosylation is a mechanism involved in epithelial-mesenchymal-epithelial transitions. PLoS One 7:e33191. doi:10.1371/journal.pone.0033191PubMedCentralPubMedCrossRefGoogle Scholar
  53. Priatel JJ, Sarkar M, Schachter H, Marth JD (1997) Isolation, characterization and inactivation of the mouse Mgat3 gene: the bisecting N-acetylglucosamine in asparagine-linked oligosaccharides appears dispensable for viability and reproduction. Glycobiology 7:45–56PubMedCrossRefGoogle Scholar
  54. Rebbaa A, Yamamoto H, Saito T, Meuillet E, Kim P, Kersey DS, Bremer EG, Taniguchi N, Moskal JR (1997) Gene transfection-mediated overexpression of beta1,4-N-acetylglucosamine bisecting oligosaccharides in glioma cell line U373 MG inhibits epidermal growth factor receptor function. J Biol Chem 272:9275–9279PubMedCrossRefGoogle Scholar
  55. Sasai K, Ikeda Y, Ihara H, Honke K, Taniguchi N (2003) Caveolin-1 regulates the functional localization of N-acetylglucosaminyltransferase III within the Golgi apparatus. J Biol Chem 278:25295–25301. doi:10.1074/jbc.M301913200PubMedCrossRefGoogle Scholar
  56. Sato Y, Takahashi M, Shibukawa Y, Jain SK, Hamaoka R, Miyagawa J, Yaginuma Y, Honke K, Ishikawa M, Taniguchi N (2001) Overexpression of N-acetylglucosaminyltransferase III enhances the epidermal growth factor-induced phosphorylation of ERK in HeLaS3 cells by up-regulation of the internalization rate of the receptors. J Biol Chem 276:11956–11962. doi:10.1074/jbc.M008551200PubMedCrossRefGoogle Scholar
  57. Sato Y, Isaji T, Tajiri M, Yoshida-Yamamoto S, Yoshinaka T, Somehara T, Fukuda T, Wada Y, Gu J (2009) An N-glycosylation site on the beta-propeller domain of the integrin alpha5 subunit plays key roles in both its function and site-specific modification by beta1,4-N-acetylglucosaminyltransferase III. J Biol Chem 284:11873–11881. doi:10.1074/jbc.M807660200PubMedCrossRefGoogle Scholar
  58. Schachter H (1986) Biosynthetic controls that determine the branching and microheterogeneity of protein-bound oligosaccharides. Biochem Cell Biol 64:163–181PubMedCrossRefGoogle Scholar
  59. Schachter H, Narasimhan S, Gleeson P, Vella G (1983) Control of branching during the biosynthesis of asparagine-linked oligosaccharides. Can J Biochem Cell Biol 61:1049–1066PubMedCrossRefGoogle Scholar
  60. Shimizu H, Ochiai K, Ikenaka K, Mikoshiba K, Hase S (1993) Structures of N-linked sugar chains expressed mainly in mouse brain. J Biochem 114:334–338PubMedGoogle Scholar
  61. Stanley P (2002) Biological consequences of overexpressing or eliminating N-acetylglucosaminyltransferase-TIII in the mouse. Biochim Biophys Acta 1573:363–368PubMedCrossRefGoogle Scholar
  62. Sultan AS, Miyoshi E, Ihara Y, Nishikawa A, Tsukada Y, Taniguchi N (1997) Bisecting GlcNAc structures act as negative sorting signals for cell surface glycoproteins in for skolin-treated rat hepatoma cells. J Biol Chem 272:2866–2872PubMedCrossRefGoogle Scholar
  63. Takahagi Y, Fujimura T, Miyagawa S, Nagashima H, Shigehisa T, Shirakura R, Murakami H (2005) Production of alpha 1,3-galactosyltransferase gene knockout pigs expressing both human decay-accelerating factor and N-acetylglucosaminyltransferase III. Mol Reprod Dev 71:331–338. doi:10.1002/mrd.20305PubMedCrossRefGoogle Scholar
  64. Takahashi M, Kuroki Y, Ohtsubo K, Taniguchi N (2009) Core fucose and bisecting GlcNAc, the direct modifiers of the N-glycan core: their functions and target proteins. Carbohydr Res 344:1387–1390. doi:10.1016/j.carres.2009.04.031PubMedCrossRefGoogle Scholar
  65. Tanemura M, Miyagawa S, Ihara Y, Matsuda H, Shirakura R, Taniguchi N (1997) Significant downregulation of the major swine xenoantigen by N-acetylglucosaminyltransferase III gene transfection. Biochem Biophys Res Commun 235:359–364. doi:10.1006/bbrc.1997.6784PubMedCrossRefGoogle Scholar
  66. Taniguchi N, Korekane H (2011) Branched N-glycans and their implications for cell adhesion, signaling and clinical applications for cancer biomarkers and in therapeutics. BMB Rep 44:772–781PubMedCrossRefGoogle Scholar
  67. Taniguchi N, Nishikawa A, Fujii S, Gu JG (1989) Glycosyltransferase assays using pyridylaminated acceptors: N-acetylglucosaminyltransferase III, IV, and V. Methods Enzymol 179:397–408PubMedCrossRefGoogle Scholar
  68. Taniguchi N, Miyoshi E, Ko JH, Ikeda Y, Ihara Y (1999) Implication of N-acetylglucosaminyltransferases III and V in cancer: gene regulation and signaling mechanism. Biochim Biophys Acta 1455:287–300PubMedCrossRefGoogle Scholar
  69. Xu Q, Akama R, Isaji T, Lu Y, Hashimoto H, Kariya Y, Fukuda T, Du Y, Gu J (2011) Wnt/β-catenin signaling down-regulates N-Acetylglucosaminyltransferase III expression: the implication of two mutually exclusive pathways for regulation. J Biol Chem 286:4310–4318PubMedCrossRefGoogle Scholar
  70. Xu Q, Isaji T, Lu Y, Gu W, Kondo M, Fukuda T, Du Y, Gu J (2012) Roles of N-acetylglucosaminyltransferase III in epithelial-to-mesenchymal transition induced by TGF-β1 in epithelial cell lines. J Biol Chem 287:16563–16574PubMedCrossRefGoogle Scholar
  71. Yamashita K, Hitoi A, Tateishi N, Higashi T, Sakamoto Y, Kobata A (1983) Organ-specific difference in the sugar chains of gamma-glutamyltranspeptidase. Arch Biochem Biophys 225:993–996PubMedCrossRefGoogle Scholar
  72. Yamashita K, Hitoi A, Matsuda Y, Miura T, Katunuma N, Kobata A (1986) Structures of sugar chains of human kidney gamma-glutamyltranspeptidase. J Biochem 99:55–62PubMedGoogle Scholar
  73. Yang X, Bhaumik M, Bhattacharyya R, Gong S, Rogler CE, Stanley P (2000) New evidence for an extra-hepatic role of N-acetylglucosaminyltransferase III in the progression of diethylnitrosamine-induced liver tumors in mice. Cancer Res 60:3313–3319PubMedGoogle Scholar
  74. Yang X, Tang J, Rogler CE, Stanley P (2003) Reduced hepatocyte proliferation is the basis of retarded liver tumor progression and liver regeneration in mice lacking N-acetylglucosaminyltransferase III. Cancer Res 63:7753–7759PubMedGoogle Scholar
  75. Yoshimura M, Nishikawa A, Ihara Y, Taniguchi S, Taniguchi N (1995) Suppression of lung metastasis of B16 mouse melanoma by N-acetylglucosaminyltransferase III gene transfection. Proc Natl Acad Sci USA 92:8754–8758PubMedCrossRefGoogle Scholar
  76. Yoshimura M, Ihara Y, Ohnishi A, Ijuhin N, Nishiura T, Kanakura Y, Matsuzawa Y, Taniguchi N (1996a) Bisecting N-acetylglucosamine on K562 cells suppresses natural killer cytotoxicity and promotes spleen colonization. Cancer Res 56:412–418PubMedGoogle Scholar
  77. Yoshimura M, Ihara Y, Matsuzawa Y, Taniguchi N (1996b) Aberrant glycosylation of E-cadherin enhances cell-cell binding to suppress metastasis. J Biol Chem 271:13811–13815PubMedCrossRefGoogle Scholar
  78. Yoshimura M, Ihara Y, Nishiura T, Okajima Y, Ogawa M, Yoshida H, Suzuki M, Yamamura K, Kanakura Y, Matsuzawa Y, Taniguchi N (1998) Bisecting GlcNAc structure is implicated in suppression of stroma-dependent haemopoiesis in transgenic mice expressing N-acetylglucosaminyltransferase III. Biochem J 331(Pt 3):733–742PubMedGoogle Scholar
  79. Zhao Y, Nakagawa T, Itoh S, Inamori K, Isaji T, Kariya Y, Kondo A, Miyoshi E, Miyazaki K, Kawasaki N, Taniguchi N, Gu J (2006) N-acetylglucosaminyltransferase III antagonizes the effect of N-acetylglucosaminyltransferase V on alpha3beta1 integrin-mediated cell migration. J Biol Chem 281:32122–32130. doi:10.1074/jbc.M607274200PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  • Yoshitaka Ikeda
    • 1
  • Hideyuki Ihara
    • 1
  • Hiroki Tsukamoto
    • 1
  • Jianguo Gu
    • 2
  • Naoyuki Taniguchi
    • 3
  1. 1.Division of Molecular Cell Biology, Department of Biomolecular Sciences, Faculty of MedicineSaga UniversitySagaJapan
  2. 2.Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and GlycobiologyTohoku Pharmaceutical UniversityAoba-kuJapan
  3. 3.Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical BiologyGlobal Research Cluster, RIKENWakoJapan

Personalised recommendations