Advertisement

UDP-Glucuronate Decarboxylase 1 (UXS1)

  • Hans Bakker
Reference work entry

Abstract

UDP-glucuronate decarboxylase/UDP-xylose synthase (UXS1) catalyzes the conversion of UDP-glucuronic acid to UDP-xylose by a decarboxylation reaction (Fig. 127.1a). At least in animals, it is assumed that this is the only enzyme catalyzing this reaction and, in contrast to plants (Kotake et al. 2004), probably no salvage pathway for xylose exists (Bakker et al. 2009). UXS1 is unique among the enzymes involved in nucleotide sugar biosynthesis in that it is localized within the lumen of the secretory pathway (Kearns et al. 1993; Hwang and Horvitz 2002; Moriarity et al. 2002). In fungi (Bar-Peled et al. 2001) and plants (Harper and Bar-Peled 2002; Kobayashi et al. 2002), however, either the enzyme is found in the cytoplasm (fungi) or different enzymes exist that are localized in the cytoplasm and the ER or Golgi (plants).

Keywords

Chondroitin Sulfate Nucleotide Sugar Decarboxylation Reaction Luminal Localization Proteoglycan Biosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Amsterdam A, Nissen RM, Sun Z, Swindell EC, Farrington S, Hopkins N (2004) Identification of 315 genes essential for early zebrafish development. Proc Natl Acad Sci USA 101:12792–12797PubMedCrossRefGoogle Scholar
  2. Ankel H, Feingold DS (1966) Biosynthesis of uridine diphosphate d-xylose. II. Uridine diphosphate d-glucuronate carboxy-lyase of Cryptococcus laurentii. Biochemistry 5:182–189PubMedCrossRefGoogle Scholar
  3. Ashikov A, Buettner FF, Tiemann B, Gerardy-Schahn R, Bakker H (2013) LARGE2 generates the same xylose and glucuronic acid containing glycan structures as LARGE. Glycobiology 23:303–309. doi:10.1093/glycob/cws153PubMedCrossRefGoogle Scholar
  4. Bakker H, Oka T, Ashikov A, Yadav A, Berger M, Rana NA, Bai X, Jigami Y, Haltiwanger RS, Esko JD, Gerardy-Schahn R (2009) Functional UDP-xylose transport across the endoplasmic reticulum/Golgi membrane in a Chinese hamster ovary cell mutant defective in UDP-xylose synthase. J Biol Chem 284:2576–2583PubMedCrossRefGoogle Scholar
  5. Bar-Peled M, Griffith CL, Doering TL (2001) Functional cloning and characterization of a UDP- glucuronic acid decarboxylase: the pathogenic fungus Cryptococcus neoformans elucidates UDP-xylose synthesis. Proc Natl Acad Sci USA 98:12003–12008PubMedCrossRefGoogle Scholar
  6. Bdolah A, Feingold DS (1965) Decarboxylation of uridine diphosphate-d-glucuronic acid by an enzyme preparation from hen oviduct. Biochem Biophys Res Commun 21:543–546PubMedCrossRefGoogle Scholar
  7. Bulik DA, Wei G, Toyoda H, Kinoshita-Toyoda A, Waldrip WR, Esko JD, Robbins PW, Selleck SB (2000) sqv-3, -7, and -8, a set of genes affecting morphogenesis in Caenorhabditis elegans, encode enzymes required for glycosaminoglycan biosynthesis. Proc Natl Acad Sci USA 97:10838–10843PubMedCrossRefGoogle Scholar
  8. Eames BF, Singer A, Smith GA, Wood ZA, Yan YL, He X, Polizzi SJ, Catchen JM, Rodriguez-Mari A, Linbo T, Raible DW, Postlethwait JH (2010) UDP xylose synthase 1 is required for morphogenesis and histogenesis of the craniofacial skeleton. Dev Biol 341:400–415PubMedCrossRefGoogle Scholar
  9. Eames BF, Yan YL, Swartz ME, Levic DS, Knapik EW, Postlethwait JH, Kimmel CB (2011) Mutations in fam20b and xylt1 reveal that cartilage matrix controls timing of endochondral ossification by inhibiting chondrocyte maturation. PLoS Genet 7:e1002246PubMedCentralPubMedCrossRefGoogle Scholar
  10. Eixelsberger T, Sykora S, Egger S, Brunsteiner M, Kavanagh KL, Oppermann U, Brecker L, Nidetzky B (2012) Structure and mechanism of human UDP-xylose synthase: evidence for a promoting role of sugar ring distortion in a three-step catalytic conversion of UDP-glucuronic acid. J Biol Chem 287:31349–31358PubMedCrossRefGoogle Scholar
  11. Feingold DS, Neufeld EF, Hassid WZ (1958) Enzymic synthesis of uridine diphosphate glucuronic acid and uridine diphosphate galacturonic acid with extracts from Phaseolus aureus seedlings. Arch Biochem Biophys 78:401–406PubMedCrossRefGoogle Scholar
  12. Feingold DS, Neufeld EF, Hassid WZ (1960) The 4-epimerization and decarboxylation of uridine diphosphate d-glucuronic acid by extracts from Phaseolus aureus seedlings. J Biol Chem 235:910–913PubMedGoogle Scholar
  13. Griffith CL, Klutts JS, Zhang L, Levery SB, Doering TL (2004) UDP-glucose dehydrogenase plays multiple roles in the biology of the pathogenic fungus Cryptococcus neoformans. J Biol Chem 279:51669–51676PubMedCrossRefGoogle Scholar
  14. Harper AD, Bar-Peled M (2002) Biosynthesis of UDP-xylose. Cloning and characterization of a novel Arabidopsis gene family, UXS, encoding soluble and putative membrane-bound UDP-glucuronic acid decarboxylase isoforms. Plant Physiol 130:2188–2198PubMedCentralPubMedCrossRefGoogle Scholar
  15. Hayashi T, Koyama T, Matsuda K (1988) Formation of UDP-xylose and xyloglucan in soybean Golgi membranes. Plant Physiol 87:341–345PubMedCentralPubMedCrossRefGoogle Scholar
  16. Herman T, Hartwieg E, Horvitz HR (1999) sqv mutants of Caenorhabditis elegans are defective in vulval epithelial invagination. Proc Natl Acad Sci USA 96:968–973PubMedCrossRefGoogle Scholar
  17. Holmborn K, Habicher J, Kasza Z, Eriksson AS, Filipek-Gorniok B, Gopal S, Couchman JR, Ahlberg PE, Wiweger M, Spillmann D, Kreuger J, Ledin J (2012) On the roles and regulation of chondroitin sulfate and heparan sulfate in zebrafish pharyngeal cartilage morphogenesis. J Biol Chem 287:33905–33916PubMedCrossRefGoogle Scholar
  18. Hwang HY, Horvitz HR (2002) The SQV-1 UDP-glucuronic acid decarboxylase and the SQV-7 nucleotide-sugar transporter may act in the Golgi apparatus to affect Caenorhabditis elegans vulval morphogenesis and embryonic development. Proc Natl Acad Sci USA 99:14218–14223PubMedCrossRefGoogle Scholar
  19. Hwang HY, Olson SK, Esko JD, Horvitz HR (2003) Caenorhabditis elegans early embryogenesis and vulval morphogenesis require chondroitin biosynthesis. Nature 423:439–443PubMedCrossRefGoogle Scholar
  20. Inamori K, Yoshida-Moriguchi T, Hara Y, Anderson ME, Yu L, Campbell KP (2012) Dystroglycan function requires xylosyl- and glucuronyltransferase activities of LARGE. Science 335:93–96PubMedCentralPubMedCrossRefGoogle Scholar
  21. Inamori KI, Hara Y, Willer T, Anderson ME, Zhu Z, Yoshida-Moriguchi T, Campbell KP (2013) Xylosyl- and glucuronyltransferase functions of LARGE in alpha-dystroglycan modification are conserved in LARGE2. Glycobiology 23:295–302. doi:10.1093/glycob/cws152PubMedCrossRefGoogle Scholar
  22. John KV, Schwartz NB, Ankel H (1977) UDP-glucuronate carboxy-lyase in cultured chondrocytes. J Biol Chem 252:6707–6710PubMedGoogle Scholar
  23. Kallberg Y, Oppermann U, Persson B (2010) Classification of the short-chain dehydrogenase/reductase superfamily using hidden Markov models. FEBS J 277:2375–2386PubMedCrossRefGoogle Scholar
  24. Kavanagh KL, Jornvall H, Persson B, Oppermann U (2008) Medium- and short-chain dehydrogenase/reductase gene and protein families: the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci 65:3895–3906PubMedCentralPubMedCrossRefGoogle Scholar
  25. Kearns AE, Vertel BM, Schwartz NB (1993) Topography of glycosylation and UDP-xylose production. J Biol Chem 268:11097–11104PubMedGoogle Scholar
  26. Kobayashi M, Nakagawa H, Suda I, Miyagawa I, Matoh T (2002) Purification and cDNA cloning of UDP-d-glucuronate carboxy-lyase (UDP-d-xylose synthase) from pea seedlings. Plant Cell Physiol 43:1259–1265PubMedCrossRefGoogle Scholar
  27. Kotake T, Yamaguchi D, Ohzono H, Hojo S, Kaneko S, Ishida HK, Tsumuraya Y (2004) UDP-sugar pyrophosphorylase with broad substrate specificity toward various monosaccharide 1-phosphates from pea sprouts. J Biol Chem 279:45728–45736PubMedCrossRefGoogle Scholar
  28. Meech R, Miners JO, Lewis BC, Mackenzie PI (2012) The glycosidation of xenobiotics and endogenous compounds: versatility and redundancy in the UDP glycosyltransferase superfamily. Pharmacol Ther 134:200–218PubMedCrossRefGoogle Scholar
  29. Mølhøj M, Reiter WD, Verma R (2003) The biosynthesis of the branched-chain sugar d-apiose in plants: functional cloning and characterization of a UDP-d-apiose/UDP-d-xylose synthase from Arabidopsis. Plant J 35:693–703PubMedCrossRefGoogle Scholar
  30. Moore CJ, Goh HT, Hewitt JE (2008) Genes required for functional glycosylation of dystroglycan are conserved in zebrafish. Genomics 92:159–167PubMedCrossRefGoogle Scholar
  31. Moriarity JL, Hurt KJ, Resnick AC, Storm PB, Laroy W, Schnaar RL, Snyder SH (2002) UDP-glucuronate decarboxylase, a key enzyme in proteoglycan synthesis: cloning, characterization, and localization. J Biol Chem 277:16968–16975PubMedCrossRefGoogle Scholar
  32. Neufeld EF, Hall CW (1965) Inhibition of UDP-d-glucose dehydrogenase by UDP-d-xylose: a possible regulatory mechanism. Biochem Biophys Res Commun 19:456–461PubMedCrossRefGoogle Scholar
  33. Nuwayhid N, Glaser JH, Johnson JC, Conrad HE, Hauser SC, Hirschberg CB (1986) Xylosylation and glucuronosylation reactions in rat liver Golgi apparatus and endoplasmic reticulum. J Biol Chem 261:12936–12941PubMedGoogle Scholar
  34. Pattathil S, Harper AD, Bar-Peled M (2005) Biosynthesis of UDP-xylose: characterization of membrane-bound AtUxs2. Planta 221:538–548PubMedCrossRefGoogle Scholar
  35. Schön S, Prante C, Bahr C, Kuhn J, Kleesiek K, Gõtting C (2006) Cloning and recombinant expression of active full-length xylosyltransferase I (XT-I) and characterization of subcellular localization of XT-I and XT-II. J Biol Chem 281:14224–14231PubMedCrossRefGoogle Scholar
  36. Schutzbach JS, Feingold DS (1970) Biosynthesis of uridine diphosphate d-xylose. IV. Mechanism of action of uridine diphosphoglucuronate carboxy-lyase. J Biol Chem 245:2476–2482PubMedGoogle Scholar
  37. Sethi MK, Buettner FF, Ashikov A, Krylov VB, Takeuchi H, Nifantiev NE, Haltiwanger RS, Gerardy-Schahn R, Bakker H (2012) Molecular cloning of a xylosyltransferase that transfers the second xylose to O-glucosylated epidermal growth factor repeats of notch. J Biol Chem 287:2739–2748PubMedCrossRefGoogle Scholar
  38. Sethi MK, Buettner FF, Krylov VB, Takeuchi H, Nifantiev NE, Haltiwanger RS, Gerardy-Schahn R, Bakker H (2010) Identification of glycosyltransferase 8 family members as xylosyltransferases acting on O-glucosylated notch epidermal growth factor repeats. J Biol Chem 285:1582–1586PubMedCrossRefGoogle Scholar
  39. Takeuchi H, Fernandez-Valdivia RC, Caswell DS, Nita-Lazar A, Rana NA, Garner TP, Weldeghiorghis TK, Macnaughtan MA, Jafar-Nejad H, Haltiwanger RS (2011) Rumi functions as both a protein O-glucosyltransferase and a protein O-xylosyltransferase. Proc Natl Acad Sci USA 108:16600–16605PubMedCrossRefGoogle Scholar
  40. Tang T, Li L, Tang J, Li Y, Lin WY, Martin F, Grant D, Solloway M, Parker L, Ye W, Forrest W, Ghilardi N, Oravecz T, Platt KA, Rice DS, Hansen GM, Abuin A, Eberhart DE, Godowski P, Holt KH, Peterson A, Zambrowicz BP, de Sauvage FJ (2010) A mouse knockout library for secreted and transmembrane proteins. Nat Biotechnol 28:749–755PubMedCrossRefGoogle Scholar
  41. Wiweger MI, Avramut CM, de Andrea CE, Prins FA, Koster AJ, Ravelli RB, Hogendoorn PC (2011) Cartilage ultrastructure in proteoglycan-deficient zebrafish mutants brings to light new candidate genes for human skeletal disorders. J Pathol 223:531–542PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Institute for Cellular ChemistryHannover Medical SchoolHannoverGermany

Personalised recommendations