UDP-Glucose: Ceramide Glucosyltransferase (UGCG)

Reference work entry


Glycosphingolipids (GSLs) occur in most of all cell membranes of vertebrates and lower animals, as well as in plants. They are major component in lipid microdomains or lipid rafts to play important roles in a wide range of physiological and pathophysiological processes. Glucosylceramide (GlcCer) is a key precursor lipid for the synthesis of over 400 GSLs with different sugar chain structures (Fig. 1.1). In addition, GlcCer has unexpected function as hexose donor for the synthesis of cholesterylglucoside (Akiyama et al. 2011). GlcCer formation in the Golgi/ER membranes is catalyzed by the enzyme ceramide glucosyltransferase (GlcT-1/GCS/CEGT/UGCG). Since catalytic activity is detectable when mammalian GlcT-1 protein is expressed in E. coli, suggesting no requirement of protein co-factor for the expression of its activity (Ichikawa et al. 1996). The gene encoding GlcT-1 is highly conserved, and the knockout animals of the GlcT-1 gene proved essential roles in embryo development (Yamashita et al. 1999; Kohyama-Koganeya et al. 2004). However, little is known about why the knockout mouse dies at embryonic day 8 and how GlcT-1 activity is regulated.


Gauche Disease Lipid Microdomains Lysosomal Acid Lipase Nicotinamide Nucleotide Mammalian Adipose Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aerts JM, Hollak C, Boot R, Groener A (2003) Biochemistry of glycosphingolipid storage disorders: implications for therapeutic intervention. Philos Trans R Soc Lond B Biol Sci 358:905–914. doi:10.1098/rstb.2003.1273PubMedCrossRefGoogle Scholar
  2. Aerts JM, Ottenhoff R, Powlson AS, Grefhorst A, van Eijk M, Dubbelhuis PF, Aten J, Kuipers F, Serlie MJ, Wennekes T, Sethi JK, O’Rahilly S, Overkleeft HS (2007) Pharmacological inhibition of glucosylceramide synthase enhances insulin sensitivity. Diabetes 56:1341–1349. doi:10.2337/db06-1619PubMedCrossRefGoogle Scholar
  3. Alfonso P, Navascués J, Navarro S, Medina P, Bolado-Carrancio A, Andreu V, Irún P, Rodríguez-Rey JC, Pocoví M, España F, Giraldo P (2013) Characterization of Variants in the Glucosylceramide Synthase Gene and their Association with Type 1 Gaucher Disease Severity. Hum Mutat doi:10.1002/humu.22381.Google Scholar
  4. Akiyama H, Sasaki N, Hanazawa S, Gotoh M, Kobayashi S, Hirabayashi Y, Murakami-Murofushi K (2011) Novel sterol glucosyltransferase in the animal tissue and cultured cells: evidence that glucosylceramide as glucose donor. Biochim Biophys Acta 1811:314–322. doi:10.1016/j.bbalip.2011.02.005PubMedCrossRefGoogle Scholar
  5. Bietrix F, Lombardo E, van Roomen CP, Ottenhoff R, Vos M, Rensen PC, Verhoeven AJ, Aerts JM, Groen AK (2010) Inhibition of glycosphingolipid synthesis induces a profound reduction of plasma cholesterol and inhibits atherosclerosis development in APOE*3 Leiden and low-density lipoprotein receptor-/- mice. Arterioscler Thromb Vasc Biol 30:931–937. doi:10.1161/ATVBAHA.109.201673PubMedCrossRefGoogle Scholar
  6. Brady RO, Kanfer JN, Shapiro D (1965) Metabolism of glucocerebrosides. Ii. evidence of an enzymatic deficiency in Gaucher’s disease. Biochem Biophys Res Commun 18:221–225PubMedCrossRefGoogle Scholar
  7. Crespo PM, Silvestre DC, Gil GA, Maccioni HJ, Daniotti JL, Caputto BL (2008) c-Fos activates glucosylceramide synthase and glycolipid synthesis in PC12 cells. J Biol Chem 283:31163–31171. doi:10.1074/jbc.M709257200PubMedCrossRefGoogle Scholar
  8. Durieux I, Martel MB, Got R (1990) Solubilization of UDP glucose-ceramide glucosyltransferase from the Golgi apparatus. Biochim Biophys Acta 1024:263–266PubMedCrossRefGoogle Scholar
  9. Fuller M (2010) Sphingolipids: the nexus between Gaucher disease and insulin resistance. Lipids Health Dis 9:113. doi:10.1186/1476–511X-9–113PubMedCentralPubMedCrossRefGoogle Scholar
  10. Gupta V, Bhinge KN, Hosain SB, Xiong K, Gu X, Shi R, Ho MY, Khoo KH, Li SC, Li YT, Ambudkar SV, Jazwinski SM, Liu YY (2012) Ceramide glycosylation by glucosylceramide synthase selectively maintains the properties of breast cancer stem cells. J Biol Chem 287:37195–37205. doi:10.1074/jbc.M112.396390PubMedCrossRefGoogle Scholar
  11. Gupta V, Patwardhan GA, Zhang QJ, Cabot MC, Jazwinski SM, Liu YY (2010) Direct quantitative determination of ceramide glycosylation in vivo: a new approach to evaluate cellular enzyme activity of glucosylceramide synthase. J Lipid Res 51:866–874. doi:10.1194/jlr.D002949PubMedCrossRefGoogle Scholar
  12. Hirabayashi Y (2012) A world of sphingolipids and glycolipids in the brain–novel functions of simple lipids modified with glucose. Proc Jpn Acad Ser B Phys Biol Sci 88:129–143PubMedCentralPubMedCrossRefGoogle Scholar
  13. Ichikawa S, Hirabayashi Y (2000) Genetic approaches for studies of glycolipid synthetic enzymes. Methods Enzymol 311:303–318PubMedCrossRefGoogle Scholar
  14. Ichikawa S, Hirabayashi Y (1998) Glucosylceramide synthase and glycosphingolipid synthesis. Trends Cell Biol 8:198–202PubMedCrossRefGoogle Scholar
  15. Ichikawa S, Nakajo N, Sakiyama H, Hirabayashi Y (1994) A mouse B16 melanoma mutant deficient in glycolipids. Proc Natl Acad Sci USA 91:2703–2707PubMedCentralPubMedCrossRefGoogle Scholar
  16. Ichikawa S, Sakiyama H, Suzuki G, Hidari KI, Hirabayashi Y (1996) Expression cloning of a cDNA for human ceramide glucosyltransferase that catalyzes the first glycosylation step of glycosphingolipid synthesis. Proc Natl Acad Sci USA 93:4638–4643PubMedCentralPubMedCrossRefGoogle Scholar
  17. Inokuchi J, Radin NS (1987) Preparation of the active isomer of 1-phenyl-2-decanoylamino-3-morpholino-1-propanol, inhibitor of murine glucocerebroside synthetase. J Lipid Res 28:565–571PubMedGoogle Scholar
  18. Jeckel D, Karrenbauer A, Burger KN, van Meer G, Wieland F (1992) Glucosylceramide is synthesized at the cytosolic surface of various Golgi subfractions. J Cell Biol 117:259–267PubMedCrossRefGoogle Scholar
  19. Jennemann R, Kaden S, Sandhoff R, Nordstrom V, Wang S, Volz M, Robine S, Amen N, Rothermel U, Wiegandt H, Grone HJ (2012) Glycosphingolipids are essential for intestinal endocytic function. J Biol Chem 287:32598–32616. doi:10.1074/jbc.M112.371005PubMedCrossRefGoogle Scholar
  20. Jennemann R, Rothermel U, Wang S, Sandhoff R, Kaden S, Out R, van Berkel TJ, Aerts JM, Ghauharali K, Sticht C, Grone HJ (2010) Hepatic glycosphingolipid deficiency and liver function in mice. Hepatology 51:1799–1809. doi:10.1002/hep.23545PubMedCrossRefGoogle Scholar
  21. Jennemann R, Sandhoff R, Langbein L, Kaden S, Rothermel U, Gallala H, Sandhoff K, Wiegandt H, Grone HJ (2007) Integrity and barrier function of the epidermis critically depend on glucosylceramide synthesis. J Biol Chem 282:3083–3094. doi:10.1074/jbc.M610304200PubMedCrossRefGoogle Scholar
  22. Jennemann R, Sandhoff R, Wang S, Kiss E, Gretz N, Zuliani C, Martin-Villalba A, Jager R, Schorle H, Kenzelmann M, Bonrouhi M, Wiegandt H, Grone HJ (2005) Cell-specific deletion of glucosylceramide synthase in brain leads to severe neural defects after birth. Proc Natl Acad Sci USA 102:12459–12464. doi:10.1073/pnas.0500893102PubMedCentralPubMedCrossRefGoogle Scholar
  23. Kohyama-Koganeya A, Nabetani T, Miura M, Hirabayashi Y (2011) Glucosylceramide synthase in the fat body controls energy metabolism in Drosophila. J Lipid Res 52:1392–1399. doi:10.1194/jlr.M014266PubMedCrossRefGoogle Scholar
  24. Kohyama-Koganeya A, Sasamura T, Oshima E, Suzuki E, Nishihara S, Ueda R, Hirabayashi Y (2004) Drosophila glucosylceramide synthase: a negative regulator of cell death mediated by proapoptotic factors. J Biol Chem 279:35995–36002. doi:10.1074/jbc.M400444200PubMedCrossRefGoogle Scholar
  25. Liu YY, Han TY, Giuliano AE, Cabot MC (1999) Expression of glucosylceramide synthase, converting ceramide to glucosylceramide, confers adriamycin resistance in human breast cancer cells. J Biol Chem 274:1140–1146PubMedCrossRefGoogle Scholar
  26. Makino A, Ishii K, Murate M, Hayakawa T, Suzuki Y, Suzuki M, Ito K, Fujisawa T, Matsuo H, Ishitsuka R, Kobayashi T (2006) d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol alters cellular cholesterol homeostasis by modulating the endosome lipid domains. Biochemistry 45:4530–4541. doi:10.1021/bi052104yPubMedCrossRefGoogle Scholar
  27. Marks DL, Dominguez M, Wu K, Pagano RE (2001) Identification of active site residues in glucosylceramide synthase. A nucleotide-binding catalytic motif conserved with processive beta-glycosyltransferases. J Biol Chem 276:26492–26498. doi:10.1074/jbc.M102612200PubMedCrossRefGoogle Scholar
  28. Marks DL, Paul P, Kamisaka Y, Pagano RE (2000) Methods for studying glucosylceramide synthase. Methods Enzymol 311:50–59PubMedCrossRefGoogle Scholar
  29. Marks DL, Wu K, Paul P, Kamisaka Y, Watanabe R, Pagano RE (1999) Oligomerization and topology of the Golgi membrane protein glucosylceramide synthase. J Biol Chem 274:451–456PubMedCrossRefGoogle Scholar
  30. Marza E, Simonsen KT, Faergeman NJ, Lesa GM (2009) Expression of ceramide glucosyltransferases, which are essential for glycosphingolipid synthesis, is only required in a small subset of C. elegans cells. J Cell Sci 122:822–833. doi:10.1242/jcs.042754PubMedCrossRefGoogle Scholar
  31. Mazzulli JR, Xu YH, Sun Y, Knight AL, McLean PJ, Caldwell GA, Sidransky E, Grabowski GA, Krainc D (2011) Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146:37–52. doi:10.1016/j.cell.2011.06.001PubMedCentralPubMedCrossRefGoogle Scholar
  32. Morell P, Costantino-Ceccarini E, Radin NS (1970) The biosynthesis by brain microsomes of cerebrosides containing nonhydroxy fatty acids. Arch Biochem Biophys 141:738–748PubMedCrossRefGoogle Scholar
  33. Mutoh T, Kawamura N, Hirabayashi Y, Shima S, Miyashita T, Ito S, Asakura K, Araki W, Cazzaniga E, Muto E, Masserini M (2012) Abnormal cross-talk between mutant presenilin 1 (I143T, G384A) and glycosphingolipid biosynthesis. FASEB J 26:3065–3074. doi:10.1096/fj.11-198630PubMedCrossRefGoogle Scholar
  34. Natoli TA, Smith LA, Rogers KA, Wang B, Komarnitsky S, Budman Y, Belenky A, Bukanov NO, Dackowski WR, Husson H, Russo RJ, Shayman JA, Ledbetter SR, Leonard JP, Ibraghimov-Beskrovnaya O (2010) Inhibition of glucosylceramide accumulation results in effective blockade of polycystic kidney disease in mouse models. Nat Med 16:788–792. doi:10.1038/nm.2171PubMedCentralPubMedCrossRefGoogle Scholar
  35. Noble SM, French S, Kohn LA, Chen V, Johnson AD (2010) Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity. Nat Genet 42:590–598. doi:10.1038/ng.605PubMedCentralPubMedCrossRefGoogle Scholar
  36. Nomura KH, Murata D, Hayashi Y, Dejima K, Mizuguchi S, Kage-Nakadai E, Gengyo-Ando K, Mitani S, Hirabayashi Y, Ito M, Nomura K (2011) Ceramide glucosyltransferase of the nematode Caenorhabditis elegans is involved in oocyte formation and in early embryonic cell division. Glycobiology 21:834–848. doi:10.1093/glycob/cwr019PubMedCrossRefGoogle Scholar
  37. Pagano RE, Martin OC (1988) A series of fluorescent N-acylsphingosines: synthesis, physical properties, and studies in cultured cells. Biochemistry 27:4439–4445PubMedCrossRefGoogle Scholar
  38. Paul P, Kamisaka Y, Marks DL, Pagano RE (1996) Purification and characterization of UDP-glucose:ceramide glucosyltransferase from rat liver Golgi membranes. J Biol Chem 271:2287–2293PubMedCrossRefGoogle Scholar
  39. Platt FM, Neises GR, Dwek RA, Butters TD (1994a) N-butyldeoxynojirimycin is a novel inhibitor of glycolipid biosynthesis. J Biol Chem 269:8362–8365PubMedGoogle Scholar
  40. Platt FM, Neises GR, Karlsson GB, Dwek RA, Butters TD (1994b) N-butyldeoxygalactonojirimycin inhibits glycolipid biosynthesis but does not affect N-linked oligosaccharide processing. J Biol Chem 269:27108–27114PubMedGoogle Scholar
  41. Rittershaus PC, Kechichian TB, Allegood JC, Merrill AH Jr, Hennig M, Luberto C, Del Poeta M (2006) Glucosylceramide synthase is an essential regulator of pathogenicity of Cryptococcus neoformans. J Clin Invest 116:1651–1659. doi:10.1172/JCI27890PubMedCentralPubMedCrossRefGoogle Scholar
  42. Saadat L, Dupree JL, Kilkus J, Han X, Traka M, Proia RL, Dawson G, Popko B (2010) Absence of oligodendroglial glucosylceramide synthesis does not result in CNS myelin abnormalities or alter the dysmyelinating phenotype of CGT-deficient mice. Glia 58:391–398. doi:10.1002/glia.20930PubMedCentralPubMedCrossRefGoogle Scholar
  43. Suzuki Y, Blough HA (1982) Enzymatic deoxyglucosylation of ceramides by microsomes of BHK-21 cells. The effect of deoxyglucose treatment and herpes virus infection. Biochim Biophys Acta 710:221–229PubMedCrossRefGoogle Scholar
  44. Vunnam RR, Radin NS (1979) Short chain ceramides as substrates for glucocerebroside synthetase. Differences between liver and brain enzymes. Biochim Biophys Acta 573:73–82PubMedCrossRefGoogle Scholar
  45. Warnock DE, Lutz MS, Blackburn WA, Young WW Jr, Baenziger JU (1994) Transport of newly synthesized glucosylceramide to the plasma membrane by a non-Golgi pathway. Proc Natl Acad Sci USA 91:2708–2712PubMedCentralPubMedCrossRefGoogle Scholar
  46. Watanabe R, Wu K, Paul P, Marks DL, Kobayashi T, Pittelkow MR, Pagano RE (1998) Up-regulation of glucosylceramide synthase expression and activity during human keratinocyte differentiation. J Biol Chem 273:9651–9655PubMedCrossRefGoogle Scholar
  47. Watanabe S, Endo S, Oshima E, Hoshi T, Higashi H, Yamada K, Tohyama K, Yamashita T, Hirabayashi Y (2010) Glycosphingolipid synthesis in cerebellar Purkinje neurons: roles in myelin formation and axonal homeostasis. Glia 58:1197–1207. doi:10.1002/glia.20999PubMedGoogle Scholar
  48. Wu K, Marks DL, Watanabe R, Paul P, Rajan N, Pagano RE (1999) Histidine-193 of rat glucosylceramide synthase resides in a UDP-glucose- and inhibitor (d-threo-1-phenyl-2-decanoylamino-3-morpholinopropan-1-ol)-binding region: a biochemical and mutational study. Biochem J 341(Pt 2):395–400PubMedCrossRefGoogle Scholar
  49. Yamashita T, Allende ML, Kalkofen DN, Werth N, Sandhoff K, Proia RL (2005) Conditional LoxP-flanked glucosylceramide synthase allele controlling glycosphingolipid synthesis. Genesis 43:175–180. doi:10.1002/gene.20167PubMedCrossRefGoogle Scholar
  50. Yamashita T, Wada R, Sasaki T, Deng C, Bierfreund U, Sandhoff K, Proia RL (1999) A vital role for glycosphingolipid synthesis during development and differentiation. Proc Natl Acad Sci USA 96:9142–9147PubMedCentralPubMedCrossRefGoogle Scholar
  51. Zhang H, Abraham N, Khan LA, Hall DH, Fleming JT, Gobel V (2011) Apicobasal domain identities of expanding tubular membranes depend on glycosphingolipid biosynthesis. Nat Cell Biol 13:1189–1201. doi:10.1038/ncb2328; 10.1038/ncb2328sPubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Molecular Membrane NeuroscienceRIKEN Brain Science InstituteWakoJapan

Personalised recommendations