Carbohydrate (N-Acetylglucosamine 6-O) Sulfotransferase 5 and 6 (CHST5,6)

Reference work entry


CHST5 and CHST6 are highly homologous genes to each other, not only at exons but also at the entire genes including putative gene regulatory regions and noncoding intron areas, and are localized side by side in chromosome 16q22 in the same direction (Akama et al. 2000). CHST5 and CHST6 are both present in human and other primate genome, but only either of them is found in other mammalian genome, such as mouse, cow, and dog. CHST5 expressed strongly in colon and small intestine (Lee et al. 1999). CHST6 is expressed in cornea and is involved in sulfation of keratan sulfate glycosaminoglycan (Akama et al. 2000).


Mutant Mouse Collagen Fibril Keratan Sulfate Syntenic Block Sulfate Lead 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akama TO, Nishida K, Nakayama J, Watanabe H, Ozaki K, Nakamura T, Dota A, Kawasaki S, Inoue Y, Maeda N, Yamamoto S, Fujiwara T, Thonar EJ, Shimomura Y, Kinoshita S, Tanigami A, Fukuda MN (2000) Macular corneal dystrophy type I and type II are caused by distinct mutations in a new sulphotransferase gene. Nat Genet 26:237–241. doi:10.1038/79987PubMedCrossRefGoogle Scholar
  2. Akama TO, Nakayama J, Nishida K, Hiraoka N, Suzuki M, McAuliffe J, Hindsgaul O, Fukuda M, Fukuda MN (2001) Human corneal GlcNAc 6-O-sulfotransferase and mouse intestinal GlcNAc 6-O-sulfotransferase both produce keratan sulfate. J Biol Chem 276:16271–16278. doi:10.1074/jbc.M009995200PubMedCrossRefGoogle Scholar
  3. Akama TO, Misra AK, Hindsgaul O, Fukuda MN (2002) Enzymatic synthesis in vitro of the disulfated disaccharide unit of corneal keratan sulfate. J Biol Chem 277:42505–42513. doi:10.1074/jbc.M207412200PubMedCrossRefGoogle Scholar
  4. Akama TO, Fukuda MN (2002) Corneal N-acetylglucosamine 6-O sulfotransferase. In: Taniguchi T, Honke K, Fukuda M (eds) Handbook of glycosyltransferases and related genes, 1st edn. Springer, Tokyo, pp 423–428CrossRefGoogle Scholar
  5. Bistrup A, Bhakta S, Lee JK, Belov YY, Gunn MD, Zuo F-R, Huang C-C, Kannagi R, Rosen SD, Hemmerich S (1999) Sulfotransferases of two specificities function in the reconstitution of high endothelial cell ligands for L-selectin. J Cell Biol 145:899–910PubMedCrossRefGoogle Scholar
  6. Edward DP, Yue BY, Sugar J, Thonar EJ, SunderRaj N, Stock EL, Tso MO (1988) Heterogeneity in macular corneal dystrophy. Arch Ophthalmol 106:1579–1583PubMedCrossRefGoogle Scholar
  7. Fukuda M, Hiraoka N, Akama TO, Fukuda MN (2001) Carbohydrate-modifying sulfotransferases: structure, function, and pathophysiology. J Biol Chem 276:47747–47750. doi:10.1074/jbc.R100049200PubMedGoogle Scholar
  8. Hasegawa N, Torii T, Kato T, Miyajima H, Furuhata A, Nakayasu K, Kanai A, Habuchi O (2000) Decreased GlcNAc 6-O-sulfotransferase activity in the cornea with macular corneal dystrophy. Invest Ophthalmol Vis Sci 41:3670–3677PubMedGoogle Scholar
  9. Hayashida Y, Akama TO, Beecher N, Lewis P, Young RD, Meek KM, Kerr B, Hughes CE, Caterson B, Tanigami A, Nakayama J, Fukada MN, Tano Y, Nishida K, Quantock AJ (2006) Matrix morphogenesis in cornea is mediated by the modification of keratan sulfate by GlcNAc 6-O-sulfotransferase. Proc Natl Acad Sci U S A 103:13333–13338. doi:10.1073/pnas.0605441103PubMedCentralPubMedCrossRefGoogle Scholar
  10. Hiraoka N, Petryniak B, Nakayama J, Tsuboi S, Suzuki M, Yeh JC, Izawa D, Tanaka T, Miyasaka M, Lowe JB, Fukuda M (1999) A novel, high endothelial venule-specific sulfotransferase expresses 6-sulfo sialyl Lewis(x), an l-selectin ligand displayed by CD34. Immunity 11:79–89PubMedCrossRefGoogle Scholar
  11. Kawashima H, Petryniak B, Hiraoka N, Mitoma J, Huckaby V, Nakayama J, Uchimura K, Kadomatsu K, Muramatsu T, Lowe JB, Fukuda M (2005) N-acetylglucosamine-6-O-sulfotransferases 1 and 2 cooperatively control lymphocyte homing through l-selectin ligand biosynthesis in high endothelial venules. Nat Immunol 6:1096–1104. doi:10.1038/ni1259PubMedCrossRefGoogle Scholar
  12. Lee JK, Bhakta S, Rosen SD, Hemmerich S (1999) Cloning and characterization of a mammalian N-acetylglucosamine-6-sulfotransferase that is highly restricted to intestinal tissue. Biochem Biophys Res Commun 263:543–549. doi:10.1006/bbrc.1999.1324PubMedCrossRefGoogle Scholar
  13. Nakazawa K, Hassell JR, Hascall VC, Lohmander LS, Newsome DA, Krachmer J (1984) Defective processing of keratan sulfate in macular corneal dystrophy. J Biol Chem 259:13751–13757PubMedGoogle Scholar
  14. Quantock AJ, Meek KM, Ridgway AE, Bron AJ, Thonar EJ (1990) Macular corneal dystrophy: reduction in both corneal thickness and collagen interfibrillar spacing. Curr Eye Res 9:393–398PubMedCrossRefGoogle Scholar
  15. Quantock AJ, Young RD, Akama TO (2010) Structural and biochemical aspects of keratan sulphate in the cornea. Cell Mol Life Sci 67:891–906. doi:10.1007/s00018-009-0228-7PubMedCrossRefGoogle Scholar
  16. Scott JE (1992) Supramolecular organization of extracellular matrix glycosaminoglycans, in vitro and in the tissues. FASEB J 6:2639–2645PubMedGoogle Scholar
  17. Uchimura K, Gauguet J-M, Singer MS, Tsay D, Kannagi R, Muramatsu T, von Andrian UH, Rosen SD (2005) A major class of l-selectin ligands is eliminated in mice deficient in two sulfotransferases expressed in high endothelial venules. Nat Immunol 6:1105–1113. doi:10.1038/ni1258PubMedCrossRefGoogle Scholar
  18. Yang CJ, SundarRaj N, Thonar EJ, Klintworth GK (1988) Immunohistochemical evidence of heterogeneity in macular corneal dystrophy. Am J Ophthalmol 106:65–71PubMedGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Department of PharmacologyKansai Medical UniversityHirakataJapan
  2. 2.Sanford-Burnham Medical Research InstituteLa JollaUSA

Personalised recommendations