Skip to main content

Fringe (UDP-GlcNAc: O-Fucosylpeptide ß1,3 N-Acetylglucosaminyltransferase)

  • Reference work entry
  • First Online:
Handbook of Glycosyltransferases and Related Genes
  • 252 Accesses

Abstract

Fringe provides a clear example of the role that carbohydrate modifications can play in regulating signal transduction events. Fringe was originally identified for its role in dorsal/ventral boundary formation during Drosophila wing development (Irvine and Wieschaus 1994). Fringe functions by altering the response of the Notch receptor to its ligands, potentiating signaling from Delta and inhibiting that from Serrate (Fleming et al. 1997; Panin et al. 1997). Fringe modulates Notch activity by altering the structure of the O-fucose glycans on the Epidermal Growth Factor-like (EGF) repeats in the extracellular domain of Notch (Bruckner et al. 2000; Moloney et al. 2000a). O-Fucose modifications occur between the second and third conserved cysteines of an EGF repeat at the consensus site C2-X-X-X-X-(S/T)-C3, where X can be any amino acid and S/T is the modification site (Rana and Haltiwanger 2011). Numerous cell surface and secreted proteins have EGF repeats containing these sites. Fringe catalyzes the addition of a ß-linked GlcNAc to the 3′-hydroxyl of O-fucose, which can be further elongated to a tetrasaccharide with the structure NeuAcα2-3/6Galß1-4GlcNAcß1-3Fuc in mammals (Moloney et al. 2000b; Rana and Haltiwanger 2011), but only to the disaccharide GlcNAcß1-3Fuc in flies (Xu et al. 2007). The glycosyltransferase activity of fringe is essential for its ability to modulate Notch signaling (Bruckner et al. 2000; Moloney et al. 2000a), demonstrating that signal transduction events can be regulated by alterations in the glycosylation state of receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bruckner K, Perez L, Clausen H, Cohen S (2000) Glycosyltransferase activity of Fringe modulates Notch-Delta interactions. Nature 406:411–415

    Article  CAS  PubMed  Google Scholar 

  • Chillakuri CR, Sheppard D, Lea SM, Handford PA (2012) Notch receptor-ligand binding and activation: insights from molecular studies. Sem Cell Dev Biol 23:421–428

    Article  CAS  Google Scholar 

  • De Celis JF, Bray SJ (2000) The Abruptex domain of Notch regulates negative interactions between Notch, its ligands and Fringe. Development 127:1291–1302

    PubMed  Google Scholar 

  • Evrard YA, Lun Y, Aulehla A, Gan L, Johnson RL (1998) Lunatic fringe is an essential mediator of somite segmentation and patterning. Nature 394:377–381

    Article  CAS  PubMed  Google Scholar 

  • Fleming RJ, Gu Y, Hukriede NA (1997) Serrate-mediated activation of Notch is specifically blocked by the product of the gene fringe in the dorsal compartment of the Drosophila wing imaginal disc. Development 124:2973–2981

    CAS  PubMed  Google Scholar 

  • Ge C, Stanley P (2008) The O-fucose glycan in the ligand-binding domain of Notch1 regulates embryogenesis and T cell development. Proc Natl Acad Sci U S A 105:1539–1544

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hambleton S, Valeyev NV, Muranyi A, Knott V, Werner JM, McMichael AJ, Handford PA, Downing AK (2004) Structural and functional properties of the human notch-1 ligand binding region. Structure (Camb) 12:2173–2183

    Article  CAS  Google Scholar 

  • Irvine KD (1999) Fringe, Notch, and making developmental boundaries. Curr Opin Genet Dev 9:434–441

    Article  CAS  PubMed  Google Scholar 

  • Irvine KD, Wieschaus E (1994) Fringe, a boundary-specific signaling molecule, mediates interactions between dorsal and ventral cells during Drosophila wing development. Cell 79:595–606

    Article  CAS  PubMed  Google Scholar 

  • Jinek M, Chen YW, Clausen H, Cohen SM, Conti E (2006) Structural insights into the Notch-modifying glycosyltransferase Fringe. Nat Struct Mol Biol 13:945–946

    Article  CAS  PubMed  Google Scholar 

  • Johnston SH, Rauskolb C, Wilson R, Prabhakaran B, Irvine KD, Vogt TF (1997) A family of mammalian Fringe genes implicated in boundary determination and the Notch pathway. Development 124:2245–2254

    CAS  PubMed  Google Scholar 

  • Joutel A, Tournier-Lasserve E (1998) Notch signalling pathway and human diseases. Semin Cell Dev Biol 9:619–625

    Article  CAS  PubMed  Google Scholar 

  • Koch U, Lacombe TA, Holland D, Bowman JL, Cohen BL, Egan SE, Guidos CJ (2001) Subversion of the T/B lineage decision in the thymus by lunatic fringe-mediated inhibition of Notch-1. Immunity 15:225–236

    Article  CAS  PubMed  Google Scholar 

  • Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laufer E, Dahn R, Orozco OE, Yeo C-Y, Pisenti J, Henrique D, Abbott UK, Fallon JF, Tabin C (1997) Expression of Radical fringe in limb-bud ectoderm regulates apical ectodermal ridge formation. Nature 386:366–373

    Article  CAS  PubMed  Google Scholar 

  • Luther KB, Schindelin H, Haltiwanger RS (2009) Structural and mechanistic insights into lunatic fringe from a kinetic analysis of enzyme mutants. J Biol Chem 284:3294–3305

    Article  CAS  PubMed  Google Scholar 

  • Moloney DJ, Panin VM, Johnston SH, Chen J, Shao L, Wilson R, Wang Y, Stanley P, Irvine KD, Haltiwanger RS, Vogt TF (2000a) Fringe is a glycosyltransferase that modifies Notch. Nature 406:369–375

    Article  CAS  PubMed  Google Scholar 

  • Moloney DJ, Shair L, Lu FM, Xia J, Locke R, Matta KL, Haltiwanger RS (2000b) Mammalian Notch1 is modified with two unusual forms of O-linked glycosylation found on epidermal growth factor-like modules. J Biol Chem 275:9604–9611

    Article  CAS  PubMed  Google Scholar 

  • Moran JL, Shifley ET, Levorse JM, Mani S, Ostmann K, Perez-Balaguer A, Walker DM, Vogt TF, Cole SE (2009) Manic fringe is not required for embryonic development, and fringe family members do not exhibit redundant functions in the axial skeleton, limb, or hindbrain. Dev Dyn 238:1803–1812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morgan TH (1919) A demonstration of genes modifying the character Notch. In: Contributions to the genetics of Drosophila melanogaster. Carnegie Institute of Washington, Washington, DC, pp 343–388

    Google Scholar 

  • Munro S, Freeman M (2000) The notch signalling regulator fringe acts in the Golgi apparatus and requires the glycosyltransferase signature motif DXD. Curr Biol 10:813–820

    Article  CAS  PubMed  Google Scholar 

  • Panin VM, Papayannopoulos V, Wilson R, Irvine KD (1997) Fringe modulates notch ligand interactions. Nature 387:908–912

    Article  CAS  PubMed  Google Scholar 

  • Panin VM, Shao L, Lei L, Moloney DJ, Irvine KD, Haltiwanger RS (2002) Notch ligands are substrates for EGF protein O-fucosyltransferase and Fringe. J Biol Chem 277:29945–29952

    Article  CAS  PubMed  Google Scholar 

  • Rampal R, Arboleda-Velasquez JF, Nita-Lazar A, Kosik KS, Haltiwanger RS (2005a) Highly conserved O-fucose sites have distinct effects on Notch1 function. J Biol Chem 280:32133–32140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rampal R, Li AS, Moloney DJ, Georgiou SA, Luther KB, Nita-Lazar A, Haltiwanger RS (2005b) Lunatic Fringe, Manic Fringe, and Radical Fringe recognize similar specificity determinants in O-Fucosylated epidermal growth factor-like repeats. J Biol Chem 280:42454–42463

    Article  CAS  PubMed  Google Scholar 

  • Rampal R, Luther KB, Haltiwanger RS (2007) Notch signaling in normal and disease States: possible therapies related to glycosylation. Curr Mol Med 7:427–445

    Article  CAS  PubMed  Google Scholar 

  • Rana NA, Haltiwanger RS (2011) Fringe benefits: functional and structural impacts of Oglycosylation on the extracellular domain of Notch receptors. Curr Opin Struct Biol 21:583–589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodriguez-Esteban C, Schwabe JWR, De La Pena J, Foys B, Eshelman B, Izpisua Belmonte JC (1997) Radical fringe positions the apical ectodermal ridge at the dorsoventral boundary of the vertebrate limb. Nature 386:360–366

    Article  CAS  PubMed  Google Scholar 

  • Ryan MJ, Bales C, Nelson A, Gonzalez DM, Underkoffler L, Segalov M, Wilson-Rawls J, Cole SE, Moran JL, Russo P, Spinner NB, Kusumi K, Loomes KM (2008) Bile duct proliferation in Jag1/fringe heterozygous mice identifies candidate modifiers of the Alagille syndrome hepatic phenotype. Hepatology 48:1989–1997

    Article  PubMed  Google Scholar 

  • Shao L, Moloney DJ, Haltiwanger RS (2003) Fringe modifies O-Fucose on mouse Notch1 at epidermal growth factor-like repeats within the ligand-binding site and the Abruptex region. J Biol Chem 278:7775–7782

    Article  CAS  PubMed  Google Scholar 

  • Shifley ET, Cole SE (2008) Lunatic fringe protein processing by proprotein convertases may contribute to the short protein half-life in the segmentation clock. Biochimica et biophysica acta 1783:2384–2390

    Article  CAS  PubMed  Google Scholar 

  • Shifley ET, Vanhorn KM, Perez-Balaguer A, Franklin JD, Weinstein M, Cole SE (2008) Oscillatory lunatic fringe activity is crucial for segmentation of the anterior but not posterior skeleton. Development 135:899–908

    Article  CAS  PubMed  Google Scholar 

  • Sparrow DB, Chapman G, Wouters MA, Whittock NV, Ellard S, Fatkin D, Turnpenny PD, Kusumi K, Sillence D, Dunwoodie SL (2006) Mutation of the LUNATIC FRINGE gene in humans causes spondylocostal dysostosis with a severe vertebral phenotype. Am J Hum Genet 78:28–37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stanley P, Guidos CJ (2009) Regulation of Notch signaling during T- and B-cell development by O-fucose glycans. Immunol Rev 230:201–215

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi H, Haltiwanger RS (2010) Role of glycosylation of Notch in development. Semin Cell Dev Biol 21:638–645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tan JB, Xu K, Cretegny K, Visan I, Yuan JS, Egan SE, Guidos CJ (2009) Lunatic and manic fringe cooperatively enhance marginal zone B cell precursor competition for delta-like 1 in splenic endothelial niches. Immunity 30:254–263

    Article  PubMed  Google Scholar 

  • Visan I, Tan JB, Yuan JS, Harper JA, Koch U, Guidos CJ (2006) Regulation of T lymphopoiesis by Notch1 and Lunatic fringe-mediated competition for intrathymic niches. Nat Immunol 7:634–643

    Article  CAS  PubMed  Google Scholar 

  • Xu A, Haines N, Dlugosz M, Rana NA, Takeuchi H, Haltiwanger RS, Irvine KD (2007) In vitro reconstitution of the modulation of Drosophila notch-ligand binding by fringe. J Biol Chem 282:35153–35162

    Article  CAS  PubMed  Google Scholar 

  • Xu K, Nieuwenhuis E, Cohen BL, Wang W, Canty AJ, Danska JS, Coultas L, Rossant J, Wu MY, Piscione TD, Nagy A, Gossler A, Hicks GG, Hui CC, Henkelman RM, Yu LX, Sled JG, Gridley T, Egan SE (2010) Lunatic Fringe-mediated Notch signaling is required for lung alveogenesis. Am J Physiol Lung Cell Mol Physiol 298:L45–56

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Charng W-L, Rana NA, Kakuda S, Jaiswal M, Bayat V, Xiong B, Zhang K, Sandoval H, David G, Wang H, Haltiwanger RS, Bellen HJ (2012) A mutation in EGF repeat-8 of Notch discriminates between Serrate/Jagged and Delta family ligands. Science 338:1229–1232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang LT, Nichols JT, Yao C, Manilay JO, Robey EA, Weinmaster G (2005) Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1. Mol Biol Cell 16:927–942

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang N, Gridley T (1998) Defects in somite formation in lunatic fringe-deficient mice. Nature 394:374–377

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Haltiwanger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this entry

Cite this entry

Haltiwanger, R.S. (2014). Fringe (UDP-GlcNAc: O-Fucosylpeptide ß1,3 N-Acetylglucosaminyltransferase). In: Taniguchi, N., Honke, K., Fukuda, M., Narimatsu, H., Yamaguchi, Y., Angata, T. (eds) Handbook of Glycosyltransferases and Related Genes. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54240-7_47

Download citation

Publish with us

Policies and ethics