Skip to main content

UDP-Gal: BetaGlcNAc Beta 1,3-Galactosyltransferase, Polypeptide 4 (B3GALT4)

  • Reference work entry
  • First Online:
Handbook of Glycosyltransferases and Related Genes

Abstract

UDP-Gal: GM2 beta 1,3-galactosyltransferase IV (B3GALT4) catalyzes the transfer of galactose from UDP-galactose to ganglioside GM2 to form GM1 (Miyazaki et al. 1997) as shown in Fig. 8.1. However, this enzyme can catalyze the synthesis of not only GM1 but also of GD1b and GA1 (asialo-GM1) from GM2, GD2, and asialo-GM2, respectively. These structures except GA1 are molecules being considered as main acidic glycosphingolipids in brain tissues of mammals and birds (Yu et al. 1988). They are also important molecules as precursors for GD1a, GT1b, and GQ1b, major gangliosides in nervous tissues. The cDNA clones of B3GALT4 were isolated by a eukaryocyte expression cloning system in 1997 (Miyazaki et al. 1997). This enzyme utilizes only glycolipid acceptors, not glycoproteins, and no other glycosyltransferases (genes) catalyzing similar functions have been isolated to date. Following the isolation of rat cDNA of B3GALT4, a highly homologous gene as an orthologue to rat cDNA was identified in the mouse genome (Mus musculus major histocompatibility locus class II region) by Rowen et al.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amado M, Almeida R, Carneiro F, Levery SB, Holmes EH, Nomoto M, Hollingsworth MA, Hassan H, Schwientek T, Nielsen PA, Bennett EP, Clausen H (1989) A family of human beta3-galactosyltransferases. Characterization of four members of a UDP-galactose:beta-N-acetyl- glucosamine/beta-nacetyl-galactosamine beta-1,3-galactosyltransferase family. J Biol Chem 273:12770–12778

    Article  Google Scholar 

  • Daniotti JL, Martina JA, Zurita AR, Maccioni HJ (1999) Mouse beta 1,3-galactosyltransferase (GA1/GM1/GD1b synthase): protein characterization, tissue expression, and developmental regulation in neural retina. J Neurosci Res 58:318–327

    Article  CAS  PubMed  Google Scholar 

  • Dong L, Liu Y, Colberg-Poley AM, Kaucic K, Ladisch S (2011) Induction of GM1a/GD1b synthase triggers complex ganglioside expression and alters neuroblastoma cell behavior; a new tumor cell model of ganglioside function. Glycoconj J 28:137–147. doi:10.1007/s10719-011-9330-9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dong Y, Ikeda K, Hamamura K, Zhang Q, Kondo Y, Matsumoto Y, Ohmi Y, Yamauchi Y, Furukawa K, Taguchi R, Furukawa K (2010) GM1/GD1b/GA1 synthase expression results in the reduced cancer phenotypes with modulation of composition and raft-localization of gangliosides in a melanoma cell line. Cancer Sci 101:2039–2047

    Article  CAS  PubMed  Google Scholar 

  • Ferrari G, Anderson BL, Stephens RM, Kaplan DR, Greene LA (1995) Prevention of apoptotic neuronal death by GM1 ganglioside. Involvement of Trk neurotrophin receptors. J Biol Chem 270:3074–3080

    Article  CAS  PubMed  Google Scholar 

  • Furian AF, Oliveira MS, Royes LF, Fiorenza NG, Fighera MR, Myskiw JC, Weiblen R, Rubin MA, Frussa-Filho R, Mello CF (2007) GM1 ganglioside induces vasodilation and increases catalase content in the brain. Free Radic Biol Med 43:924–932

    Article  CAS  PubMed  Google Scholar 

  • Furian AF, Oliveira MS, Magni DV, Souza MA, Bortoluzzi VT, Bueno LM, Royes LF, Mello CF (2008) L-NAME prevents GM1 ganglioside-induced vasodilation in the rat brain. Neurochem Int 53:362–369

    Article  CAS  PubMed  Google Scholar 

  • Furukawa K, Ohkawa Y, Yamauchi Y, Hamamura K, Ohmi Y, Furukawa K (2012) Fine tuning of cell signals by glycosylation. J Biochem 151:573–578. doi:10.1093/jb/mvs043

    Article  CAS  PubMed  Google Scholar 

  • Hamamura K, Tanahashi K, Furukawa K, Hattori T, Hattori H, Mizutani H, Ueda M, Urano T, Furukawa K (2005) GM1 expression in H-ras-transformed NIH3T3 results in the suppression of cell proliferation inducing the partial transfer of activated H-ras from non-raft to raft fraction. Int J Oncol 26:897–904

    CAS  PubMed  Google Scholar 

  • Honke K, Taniguchi N, Makita A (1986) A radioimmune assay of ganglioside GM1 synthase using cholera toxin. Anal Biochem 155:395–399

    Article  CAS  PubMed  Google Scholar 

  • Ledeen R, Wu G (2007) GM1 in the nuclear envelope regulates nuclear calcium through association with a nuclear sodium-calcium exchanger. J Neurochem 103(Suppl 1):126–134

    Article  CAS  PubMed  Google Scholar 

  • Martina JA, Daniotti JL, Maccioni HJ (2000) GM1 synthase depends on N-glycosylation for enzyme activity and trafficking to the Golgi complex. Neurochem Res 25:725–731

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto Y, Zhang Q, Akita K, Nakada H, Hamamura K, Tokuda N, Tsuchida A, Matsubara T, Hori T, Okajima T, Furukawa K, Urano T, Furukawa K (2012) pp-GalNAc-T13 induces high metastatic potential of murine Lewis lung cancer by generating trimeric Tn antigen. Biochem Biophys Res Commun 419:7–13

    Article  CAS  PubMed  Google Scholar 

  • Mitsuda T, Furukawa K, Fukumoto S, Miyazaki H, Urano T, Furukawa K (2002) Overexpression of ganglioside GM1 results in the dispersion of platelet-derived growth factor receptor from glycolipid-enriched microdomains and in the suppression of cell growth signals. J Biol Chem 277:11239–11246

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki H, Fukumoto S, Okada M, Hasegawa T, Furukawa K (1997) Expression cloning of rat cDNA encoding UDP-galactose:GD2 beta1,3-galactosyltransferase that determines the expression of GD1b/GM1/GA1. J Biol Chem 272:24794–24799

    Article  CAS  PubMed  Google Scholar 

  • Mutoh T, Hamano T, Yano S, Koga H, Yamamoto H, Furukawa K, Ledeen RW (2002) Stable transfection of GM1 synthase gene into GM1-deficient NG108-15 cells, CR-72 cells, rescues the responsiveness of Trk-neurotrophin receptor to its ligand, NGF. Neurochem Res 27:801–806

    Article  CAS  PubMed  Google Scholar 

  • Mutoh T, Tokuda A, Miyadai T, Hamaguchi M, Fujiki N (1995) Ganglioside GM1 binds to the Trk protein and regulates receptor function. Proc Natl Acad Sci U S A 92:5087–5091

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nishio M, Fukumoto S, Furukawa K, Ichimura A, Miyazaki H, Kusunoki S, Urano T, Furukawa K (2004) Overexpressed GM1 suppresses nerve growth factor (NGF) signals by modulating the intracellular localization of NGF receptors and membrane fluidity in PC12 cells. J Biol Chem 279:33368–33378

    Article  CAS  PubMed  Google Scholar 

  • Oikawa N, Yamaguchi H, Ogino K, Taki T, Yuyama K, Yamamoto N, Shin RW, Furukawa K, Yanagisawa K (2009) Gangliosides determine the amyloid pathology of Alzheimer’s disease. Neuroreport 20:1043–1046

    CAS  PubMed  Google Scholar 

  • Schneider JS, Pope A, Simpson K, Taggart J, Smith MG, DiStefano L (1992) Recovery from experimental parkinsonism in primates with GM1 ganglioside treatment. Science 256:843–836

    Article  CAS  PubMed  Google Scholar 

  • Shiina T, Kikkawa E, Iwasaki H, Kaneko M, Narimatsu H, Sasaki K, Bahram S, Inoko H (2000) The beta-1,3-galactosyltransferase-4 (B3GALT4) gene is located in the centromeric segment of the human MHC class II region. Immunogenetics 51:75–78

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa K, Odaka A, Suzuki N, Ihara Y (1995) GM1 ganglioside-bound amyloid beta-protein (A beta): a possible form of preamyloid in Alzheimer’s disease. Nat Med 1:1062–1066

    Article  CAS  PubMed  Google Scholar 

  • Yu RK, Macala LJ, Taki T, Weinfield HM, Yu FS (1988) Developmental changes in ganglioside composition and synthesis in embryonic rat brain. J Neurochem 50:1825–1829

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Furukawa K, Chen HH, Sakakibara T, Urano T, Furukawa K (2006) Metastatic potential of mouse Lewis lung cancer cells is regulated via ganglioside GM1 by modulating the matrix metalloprotease-9 localization in lipid rafts. J Biol Chem 81:18145–18155

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Furukawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this entry

Cite this entry

Furukawa, K., Ohmi, Y., Furukawa, K. (2014). UDP-Gal: BetaGlcNAc Beta 1,3-Galactosyltransferase, Polypeptide 4 (B3GALT4). In: Taniguchi, N., Honke, K., Fukuda, M., Narimatsu, H., Yamaguchi, Y., Angata, T. (eds) Handbook of Glycosyltransferases and Related Genes. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54240-7_32

Download citation

Publish with us

Policies and ethics