Advertisement

ST3 Beta-Galactoside Alpha-2,3-Sialyltransferase 1 (ST3GAL1)

  • Kiyohiko Angata
  • Minoru Fukuda
Reference work entry

Abstract

Sialyltransferases which add sialic acid with α2,3-, α2,6-, or α2,8-linkages contribute to the terminal of carbohydrate structures and functions of cell surface molecules including glycolipids and glycoproteins (Tsuji et al. 1996; Harduin-Lepers et al. 2001; Audry et al. 2011). Glycans with α2,3-linked sialic acids present on cell surface are known as receptors of viruses such as influenza viruses and target molecules of siglecs, which contain an immunoglobulin domain with lectin activity capturing sialic acids. So far, there are six α2,3-sialyltransferases in mammal genome. The first cDNA of ST3GAL1 was cloned based on the deduced peptide sequences of purified α2,3-sialyltransferase from porcine liver (Gillespie et al. 1992), and orthologues have been found in many vertebrate genomes. Since ST3GAL1 has a strict acceptor specificity toward type III glycans (Galβ1→3GalNAc), ST3GAL1 predominantly adds sialic acid to the core 1 O-glycan, Galβ1→3GalNAc→Ser/Thr, which is a major core structure of mucin-type O-glycans. For instance, the resulting oligosaccharide product is a sialylated core 1 O-glycan, NeuAcα2→3Galβ1→3GalNAc→Ser/Thr, which is also further sialylated by certain α2,6-sialyltransferases, generating a fully sialylated tetrasaccharide: NeuAcα2→3Galβ1→3(NeuAcα2→6)GalNAc→Ser/Thr (Fig. 57.1).

Keywords

Sialic Acid Porcine Liver Brain cDNA Library Selectin Ligand Aberrant Glycosylation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Audry M, Jeanneau C, Imberty A, Harduin-Lepers A, Delannoy P, Breton C (2011) Current trends in the structure-activity relationships of sialyltransferases. Glycobiology 21:716–726PubMedCrossRefGoogle Scholar
  2. Angata K, Yen TY, El-Battari A, Macher BA, Fukuda M (2001) Unique disulfide bond structures found in ST8Sia IV polysialyltransferase are required for its activity. J Biol Chem 276:15369–15377PubMedCrossRefGoogle Scholar
  3. Baum LG, Pang M, Perillo NL, Wu T, Delegeane A, Uittenbogaart CH, Fukuda M, Seilhamer JJ (1995) Human thymic epithelial cells express an endogenous lectin, galectin-1, which binds to core 2 O-glycans on thymocytes and T lymphoblastoid cells. J Exp Med 181:877–887PubMedCrossRefGoogle Scholar
  4. Burchell J, Poulsom R, Hanby A, Whitehouse C, Cooper L, Clausen H, Miles D, Taylor-Papadimitriou J (1999) An alpha2,3 sialyltransferase (ST3Gal I) is elevated in primary breast carcinomas. Glycobiology 9:1307–1311PubMedCrossRefGoogle Scholar
  5. Dalziel M, Whitehouse C, McFarlane I, Brockhausen I, Gschmeissner S, Schwientek T, Clausen H, Burchell JM, Taylor-Papadimitriou J (2001) The relative activities of the C2GnT1 and ST3Gal-I glycosyltransferases determine O-glycan structure and expression of a tumor-associated epitope on MUC1. J Biol Chem 276:11007–11015PubMedCrossRefGoogle Scholar
  6. Datta AK, Chammas R, Paulson JC (2001) Conserved cysteines in the sialyltransferase sialylmotifs form an essential disulfide bond. J Biol Chem 276:15200–15207PubMedCrossRefGoogle Scholar
  7. Ellies LG, Sperandio M, Underhill GH, Yousif J, Smith M, Priatel JJ, Kansas GS, Ley K, Marth JD (2002) Sialyltransferase specificity in selectin ligand formation. Blood 100:3618–3625PubMedCrossRefGoogle Scholar
  8. Gillespie W, Kelm S, Paulson JC (1992) Cloning and expression of Gal β1,3GalNAc α 2,3- sialyltransferase. J Biol Chem 267:21004–21010PubMedGoogle Scholar
  9. Gillespie W, Paulson JC, Kelm S, Pang M, Baum LG (1993) Regulation of α2,3- sialyltransferase expression correlates with conversion of peanut agglutinin (PNA) + to PNA- phenotype in developing thymocytes. J Biol Chem 268:3801–3804PubMedGoogle Scholar
  10. Harduin-Lepers A, Vallejo-Ruiz V, Krzewinski-Recchi MA, Samyn-Petit B, Julien S, Delannoy P (2001) The human sialyltransferase family. Biochimie 83:727–737PubMedCrossRefGoogle Scholar
  11. Jeanneau C, Chazalet V, Augé C, Soumpasis DM, Harduin-Lepers A, Delannoy P, Imberty A, Breton C (2004) Structure-function analysis of the human sialyltransferase ST3Gal I: role of n-glycosylation and a novel conserved sialylmotif. J Biol Chem 279:13461–13468PubMedCrossRefGoogle Scholar
  12. Kitagawa H, Paulson JC (1994) Differential expression of five sialyltransferase genes in human tissues. J Biol Chem 269:17872–17878PubMedGoogle Scholar
  13. Kono M, Ohyama Y, Lee YC, Hamamoto T, Kojima N, Tsuji S (1997) Mouse beta-galactoside alpha 2,3-sialyltransferases: comparison of in vitro substrate specificities and tissue specific expression. Glycobiology 7:469–479PubMedCrossRefGoogle Scholar
  14. Kurosawa N, Hamamoto T, Inoue M, Tsuji S (1995) Molecular cloning and expression of chick Gal β1,3GalNAc α2,3-sialyltransferase. Biochim Biophys Acta 1244:216–222PubMedCrossRefGoogle Scholar
  15. Lantéri M, Giordanengo V, Hiraoka N, Fuzibet JG, Auberger P, Fukuda M, Baum LG, Lefebvre JC (2003) Altered T cell surface glycosylation in HIV-1 infection results in increased susceptibility to galectin-1-induced cell death. Glycobiology 13:909–918PubMedCrossRefGoogle Scholar
  16. Lee YC, Kurosawa N, Hamamoto T, Nakaoka T, Tsuji S (1993) Molecular cloning and expression of Gal β1,3GalNAc α2,3-sialyltransferase from mouse brain. Eur J Biochem 216:377–385PubMedCrossRefGoogle Scholar
  17. Picco G, Julien S, Brockhausen I, Beatson R, Antonopoulos A, Haslam S, Mandel U, Dell A, Pinder S, Taylor-Papadimitriou J, Burchell J (2010) Over-expression of ST3Gal-I promotes mammary tumorigenesis. Glycobiology 20:1241–1250PubMedCrossRefGoogle Scholar
  18. Piller F, Piller V, Fox RI, Fukuda M (1988) Human T-lymphocyte activation is associated with changes in O-glycan biosynthesis. J Biol Chem 263:15146–15150PubMedGoogle Scholar
  19. Priatel JJ, Chui D, Hiraoka N, Simmons CJ, Richardson KB, Page DM, Fukuda M, Varki NM, Marth JD (2000) The ST3Gal-I sialyltransferase controls CD8+ T lymphocyte homeostasis by modulating O-glycan biosynthesis. Immunity 12:273–283PubMedCrossRefGoogle Scholar
  20. Rao FV, Rich JR, Rakic B, Buddai S, Schwartz MF, Johnson K, Bowe C, Wakarchuk WW, Defrees S, Withers SG, Strynadka NC (2009) Structural insight into mammalian sialyltransferases. Nat Struct Mol Biol 16:1186–1188PubMedCrossRefGoogle Scholar
  21. Skrincosky D, Kain R, El-Battari A, Exner M, Kerjaschki D, Fukuda M (1997) Altered Golgi localization of core 2 beta-1,6-N-acetylglucosaminyltransferase leads to decreased synthesis of branched O-glycans. J Biol Chem 272:22695–22702PubMedCrossRefGoogle Scholar
  22. Sproviero D, Julien S, Burford B, Taylor-Papadimitriou J, Burchell JM (2012) Cyclooxygenase-2 enzyme induces the expression of the α-2,3-sialyltransferase-3 (ST3Gal-I) in breast cancer. J Biol Chem 287:44490–44497PubMedCrossRefGoogle Scholar
  23. Sturgill ER, Aoki K, Lopez PH, Colacurcio D, Vajn K, Lorenzini I, Majic S, Yang WH, Heffer M, Tiemeyer M, Marth JD, Schnaar RL (2012) Biosynthesis of the major brain gangliosides GD1a and GT1b. Glycobiology 22:1289–1301PubMedCrossRefGoogle Scholar
  24. Takashima S (2008) Characterization of mouse sialyltransferase genes: their evolution and diversity. Biosci Biotechnol Biochem 72:1155–1167PubMedCrossRefGoogle Scholar
  25. Tsuji S, Datta AK, Paulson JC (1996) Systematic nomenclature for sialyltransferases. Glycobiology 6:v–viiPubMedCrossRefGoogle Scholar
  26. Van Dyken SJ, Green RS, Marth JD (2007) Structural and mechanistic features of protein O glycosylation linked to CD8+ T-cell apoptosis. Mol Cell Biol 27:1096–1111PubMedCentralPubMedCrossRefGoogle Scholar
  27. Videira PA, Correia M, Malagolini N, Crespo HJ, Ligeiro D, Calais FM, Trindade H, Dall’Olio F (2009) ST3Gal. I sialyltransferase relevance in bladder cancer tissues and cell lines. BMC Cancer 9:357PubMedCentralPubMedCrossRefGoogle Scholar
  28. Whitehouse C, Burchell J, Gschmeissner S, Brockhausen I, Lloyd KO, Taylor-Papadimitriou J (1997) A transfected sialyltransferase that is elevated in breast cancer and localizes to the medial/trans-Golgi apparatus inhibits the development of core-2-based O-glycans. J Cell Biol 137:1229–1241PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Research Center for Medical GlycoscienceNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  2. 2.Sanford-Burnham Medical Research InstituteLa JollaUSA

Personalised recommendations