Beta-1,3-Galactosyl-O-Glycosyl-Glycoprotein Beta-1,6-N-Acetylglucosaminyltransferase 1 (GCNT1) (C2GnT-L) and Beta-1,3-Galactosyl-O-Glycosyl-Glycoprotein Beta-1,6-N-Acetylglucosaminyltransferase 3 (GCNT4) (C2GnT-T)

  • Shigeru Tsuboi
  • Minoru Fukuda
Reference work entry


The appearance of a branch Galβ1-3(GlcNAcβ1-6)GalNAc in O-glycans has been demonstrated in many important biological processes such as T cell activation, T cell development, leukemia, immunodeficiencies (Tsuboi and Fukuda 2001), and cancer metastasis (Tsuboi et al. 2012). This branch is formed by a glycosyltransferase, core2 β1-6GlcNAc transferase (designated C2GnT) that catalyzes the transfer of GlcNAc to Galβ1-3GalNAc in O-glycans, resulting in the conversion of Galβ1-3GalNAc, core1 to Galβ1-3(GlcNAcβ1-6)GalNAc, core2 (Fig. 34.1).


High Endothelial Venule Core2 Oligosaccharide Selectin Ligand Core2 Branch Human Promyelocytic Leukemia Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Baum LG, Pang M, Perillo NL, Wu T, Delegeane A, Uittenbogaart CH, Fukuda M, Seilhamer JJ (1995) Human thymic epithelial cells express an endogenous lectin, galectin-1, which binds to core 2 O-glycans on thymocytes and T lymphoblastoid cells. J Exp Med 181:877–887PubMedCrossRefGoogle Scholar
  2. Bierhuizen MF, Fukuda M (1992) Expression cloning of a cDNA encoding UDP-GlcNAc: Gal beta 1-3-GalNAc-R (GlcNAc to GalNAc) beta 1-6GlcNAc transferase by gene transfer into CHO cells expressing polyoma large tumor antigen. Proc Natl Acad Sci U S A 89:9326–9330PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bistrup A, Bhakta S, Lee JK, Belov YY, Gunn MD, Zuo FR, Huang CC, Kannagi R, Rosen SD, Hemmerich S (1999) Sulfotransferases of two specificities function in the reconstitution of high endothelial cell ligands for L-selectin. J Cell Biol 145:899–910PubMedCrossRefGoogle Scholar
  4. Brockhausen I, Kuhns W, Schachter H, Matta KL, Sutherland DR, Baker MA (1991) Biosynthesis of O-glycans in leukocytes from normal donors and from patients with leukemia: increase in O-glycan core 2 UDP-GlcNAc: Gal beta 3 GalNAc alpha-R (GlcNAc to GalNAc) beta(1-6)-N-acetylglucosaminyltransferase in leukemic cells. Cancer Res 51:1257–1263PubMedGoogle Scholar
  5. Ellies LG, Tsuboi S, Petryniak B, Lowe JB, Fukuda M, Marth JD (1998) Core 2 oligosaccharide biosynthesis distinguishes between selectin ligands essential for leukocyte homing and inflammation. Immunity 9:881–890PubMedCrossRefGoogle Scholar
  6. Gauguet JM, Rosen SD, Marth JD, von Andrian UH (2004) Core 2 branching beta1,6-N-acetylglucosaminyltransferase and high endothelial cell N-acetylglucosamine-6-sulfotransferase exert differential control over B- and T-lymphocyte homing to peripheral lymph nodes. Blood 104:4104–4112PubMedCrossRefGoogle Scholar
  7. Hagisawa S, Ohyama C, Takahashi T, Endoh M, Moriya T, Nakayama J, Arai Y, Fukuda M (2005) Expression of core 2 beta1,6-N-acetylglucosaminyltransferase facilitates prostate cancer progression. Glycobiology 15:1016–1024PubMedCrossRefGoogle Scholar
  8. Hatakeyama S, Kyan A, Yamamoto H, Okamoto A, Sugiyama N, Suzuki Y, Yoneyama T, Hashimoto Y, Koie T, Yamada S et al (2010) Core 2 N-acetylglucosaminyltransferase-1 expression induces aggressive potential of testicular germ cell tumor. Int J Cancer 127:1052–1059PubMedCentralPubMedCrossRefGoogle Scholar
  9. Hemmerich S, Leffler H, Rosen SD (1995) Structure of the O-glycans in GlyCAM-1, an endothelial-derived ligand for L-selectin. J Biol Chem 270:12035–12047PubMedCrossRefGoogle Scholar
  10. Higgins EA, Siminovitch KA, Zhuang DL, Brockhausen I, Dennis JW (1991) Aberrant O-linked oligosaccharide biosynthesis in lymphocytes and platelets from patients with the Wiskott-Aldrich syndrome. J Biol Chem 266:6280–6290PubMedGoogle Scholar
  11. Hiraoka N, Kawashima H, Petryniak B, Nakayama J, Mitoma J, Marth JD, Lowe JB, Fukuda M (2004) Core 2 branching beta1,6-N-acetylglucosaminyltransferase and high endothelial venule-restricted sulfotransferase collaboratively control lymphocyte homing. J Biol Chem 279:3058–3067PubMedCrossRefGoogle Scholar
  12. Hiraoka N, Petryniak B, Nakayama J, Tsuboi S, Suzuki M, Yeh JC, Izawa D, Tanaka T, Miyasaka M, Lowe JB et al (1999) A novel, high endothelial venule-specific sulfotransferase expresses 6-sulfo sialyl Lewis(x), an L-selectin ligand displayed by CD34. Immunity 11:79–89PubMedCrossRefGoogle Scholar
  13. Huang MM, Tsuboi S, Wong A, Yu XJ, Oh-Eda M, Derry JM, Francke U, Fukuda M, Weinberg KI, Kohn DB (2000) Expression of human Wiskott-Aldrich syndrome protein in patients’ cells leads to partial correction of a phenotypic abnormality of cell surface glycoproteins. Gene Ther 7:314–320PubMedCrossRefGoogle Scholar
  14. Ismail MN, Stone EL, Panico M, Lee SH, Luu Y, Ramirez K, Ho SB, Fukuda M, Marth JD, Haslam SM et al (2011) High-sensitivity O-glycomic analysis of mice deficient in core 2 {beta}1,6-N-acetylglucosaminyltransferases. Glycobiology 21:82–98PubMedCrossRefGoogle Scholar
  15. Kawashima H, Petryniak B, Hiraoka N, Mitoma J, Huckaby V, Nakayama J, Uchimura K, Kadomatsu K, Muramatsu T, Lowe JB, Fukuda M (2005) N-acetylglucosamine-6-O-sulfotransferases 1 and 2 cooperatively control lymphocyte homing through L-selectin ligand biosynthesis in high endothelial venules. Nat Immunol 6:1096–1104PubMedCrossRefGoogle Scholar
  16. Li F, Wilkins PP, Crawley S, Weinstein J, Cummings RD, McEver RP (1996) Post-translational modifications of recombinant P-selectin glycoprotein ligand-1 required for binding to P- and E-selectin. J Biol Chem 271:3255–3264PubMedCrossRefGoogle Scholar
  17. Machida E, Nakayama J, Amano J, Fukuda M (2001) Clinicopathological significance of core 2 beta1,6-N-acetylglucosaminyltransferase messenger RNA expressed in the pulmonary adenocarcinoma determined by in situ hybridization. Cancer Res 61:2226–2231PubMedGoogle Scholar
  18. Maemura K, Fukuda M (1992) Poly-N-acetyllactosaminyl O-glycans attached to leukosialin. The presence of sialyl Le(x) structures in O-glycans. J Biol Chem 267:24379–24386PubMedGoogle Scholar
  19. Okamoto T, Yoneyama MS, Hatakeyama S, Mori K, Yamamoto H, Koie T, Saitoh H, Yamaya K, Funyu T, Fukuda M et al (2013) Core2 O-glycan-expressing prostate cancer cells are resistant to NK cell immunity. Mol Med Rep 7:359–364PubMedGoogle Scholar
  20. Piller F, Le Deist F, Weinberg KI, Parkman R, Fukuda M (1991) Altered O-glycan synthesis in lymphocytes from patients with Wiskott-Aldrich syndrome. J Exp Med 173:1501–1510PubMedCrossRefGoogle Scholar
  21. Piller F, Piller V, Fox RI, Fukuda M (1988) Human T-lymphocyte activation is associated with changes in O-glycan biosynthesis. J Biol Chem 263:15146–15150PubMedGoogle Scholar
  22. Saitoh O, Piller F, Fox RI, Fukuda M (1991) T-lymphocytic leukemia expresses complex, branched O-linked oligosaccharides on a major sialoglycoprotein, leukosialin. Blood 77:1491–1499PubMedGoogle Scholar
  23. Schwientek T, Yeh JC, Levery SB, Keck B, Merkx G, van Kessel AG, Fukuda M, Clausen H (2000) Control of O-glycan branch formation. Molecular cloning and characterization of a novel thymus-associated core 2 beta1, 6-n-acetylglucosaminyltransferase. J Biol Chem 275:11106–11113PubMedCrossRefGoogle Scholar
  24. Shimodaira K, Nakayama J, Nakamura N, Hasebe O, Katsuyama T, Fukuda M (1997) Carcinoma-associated expression of core 2 beta-1,6-N-acetylglucosaminyltransferase gene in human colorectal cancer: role of O-glycans in tumor progression. Cancer Res 57:5201–5206PubMedGoogle Scholar
  25. Stone EL, Ismail MN, Lee SH, Luu Y, Ramirez K, Haslam SM, Ho SB, Dell A, Fukuda M, Marth JD (2009) Glycosyltransferase function in core 2-type protein O glycosylation. Mol Cell Biol 29:3770–3782PubMedCentralPubMedCrossRefGoogle Scholar
  26. Suzuki Y, Sutoh M, Hatakeyama S, Mori K, Yamamoto H, Koie T, Saitoh H, Yamaya K, Funyu T, Habuchi T et al (2012) MUC1 carrying core 2 O-glycans functions as a molecular shield against NK cell attack, promoting bladder tumor metastasis. Int J Oncol 40:1831–1838PubMedCentralPubMedGoogle Scholar
  27. Tsuboi S (2012) Tumor defense systems using O-glycans. Biol Pharm Bull 35:1633–1636PubMedCrossRefGoogle Scholar
  28. Tsuboi S, Fukuda M (1997) Branched O-linked oligosaccharides ectopically expressed in transgenic mice reduce primary T-cell immune responses. EMBO J 16:6364–6373PubMedCrossRefGoogle Scholar
  29. Tsuboi S, Fukuda M (1998) Overexpression of branched O-linked oligosaccharides on T cell surface glycoproteins impairs humoral immune responses in transgenic mice. J Biol Chem 273:30680–30687PubMedCrossRefGoogle Scholar
  30. Tsuboi S, Fukuda M (2001) Roles of O-linked oligosaccharides in immune responses. Bioessays 23:46–53PubMedCrossRefGoogle Scholar
  31. Tsuboi S, Hatakeyama S, Ohyama C, Fukuda M (2012) Two opposing roles of O-glycans in tumor metastasis. Trends Mol Med 18:224–232PubMedCentralPubMedCrossRefGoogle Scholar
  32. Tsuboi S, Sutoh M, Hatakeyama S, Hiraoka N, Habuchi T, Horikawa Y, Hashimoto Y, Yoneyama T, Mori K, Koie T et al (2011) A novel strategy for evasion of NK cell immunity by tumours expressing core2 O-glycans. EMBO J 30:3173–3185PubMedCrossRefGoogle Scholar
  33. Yeh JC, Hiraoka N, Petryniak B, Nakayama J, Ellies LG, Rabuka D, Hindsgaul O, Marth JD, Lowe JB, Fukuda M (2001) Novel sulfated lymphocyte homing receptors and their control by a Core1 extension beta 1,3-N-acetylglucosaminyltransferase. Cell 105:957–969PubMedCrossRefGoogle Scholar
  34. Yeh JC, Ong E, Fukuda M (1999) Molecular cloning and expression of a novel beta-1, 6-N-acetylglucosaminyltransferase that forms core 2, core 4, and I branches. J Biol Chem 274:3215–3221PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Department of Cancer Immunology and Cell BiologyOyokyo Kidney Research InstituteHirosakiJapan
  2. 2.Sanford-Burnham Medical Research InstituteLa JollaUSA

Personalised recommendations