Advertisement

UDP-Gal: BetaGal Beta 1,3-Galactosyltransferase Polypeptide 6 (B3GALT6)

  • Malene Bech Vester-Christensen
  • Lars Hansen
  • Henrik Clausen
Reference work entry

Abstract

The gene B3GALT6 encodes for the UDP-Gal:βGalβ1-4Xyl β1,3-galactosyltransferase (β3Gal-T6) previously designated the Gal-II synthase catalyzing the third step in the biosynthesis of the proteoglycan linker tetrasaccharide (GlcAβ1-3Galβ1-3Galβ1-4Xylβ1-O-Ser). The β1,3-galactosyltransferase family assigned to CAZy family GT31 contains 6 members, β3Gal-T1, T2, T4, T5, T6, and C1Gal-T1 with different functions. β3Gal-T1, -T2, and -T5 form Galβ1-3GlcNAc linkages (type 1 chain structures) in glycolipids and glycoproteins (Kolbinger et al. 1998; Amado et al. 1998; Hennet et al. 1998; Isshiki et al. 1999; Zhou et al. 1999a), β3Gal-T4 forms Galβ1-3GalNAc in gangliosides (Amado et al. 1998), β3Gal-T6 forms Galβ1-3Gal in the proteoglycan linker region (Bai et al. 2001), and C1Gal-T1 forms Galβ1-3GalNAcα1-O-Ser/Thr (core 1 structure) in O-glycans (Ju et al. 2002). The acceptor molecules for these enzymes include glycosphingolipids, N-glycoproteins, mucin-type O-glycoproteins, and proteoglycans (Miyazaki et al. 1997; Amado et al. 1999).

Keywords

Autism Spectrum Disorder Mouse Brain cDNA Proteoglycan Biosynthesis Chick Embryonic Brain Chick Cartilage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by The Danish Research Councils, a program of excellence from the University of Copenhagen, and the Danish National Research Foundation (DNRF107).

References

  1. Almeida R, Levery SB, Mandel U, Kresse H, Schwientek T, Bennett EP, Clausen H (1999) Cloning and expression of a proteoglycan UDP-galactose:β-xylose β1,4-galactosyltransferase I. A seventh member of the human β4-galactosyltransferase gene family. J Biol Chem 274:26165–26171PubMedCrossRefGoogle Scholar
  2. Amado M, Almeida R, Carneiro F, Levery SB, Holmes EH, Nomoto M, Hollingsworth MA, Hassan H, Schwientek T, Nielsen PA, Bennett EP, Clausen H (1998) A family of human β3-galactosyltransferases. Characterization of four members of a UDP-galactose:β-N-acetyl-glucosamine/β-N-acetyl-galactosamine β-1,3-galactosyltransferase family. J Biol Chem 273:12770–12778PubMedCrossRefGoogle Scholar
  3. Amado M, Almeida R, Schwientek T, Clausen H (1999) Identification and characterization of large galactosyltransferase gene families: galactosyltransferases for all functions. Biochim Biophys Acta 1473:35–53PubMedCrossRefGoogle Scholar
  4. Bai X, Zhou D, Brown JR, Crawford BE, Hennet T, Esko JD (2001) Biosynthesis of the linkage region of glycosaminoglycans: cloning and activity of galactosyltransferase II, the sixth member of the β1,3-galactosyltransferase family (β3GalT6). J Biol Chem 276:48189–48195PubMedGoogle Scholar
  5. Berninsone P, Hwang HY, Zemtseva I, Horvitz HR, Hirschberg CB (2001) SQV-7, a protein involved in Caenorhabditis elegans epithelial invagination and early embryogenesis, transports UDP-glucuronic acid, UDP-N-acetylgalactosamine, and UDP-galactose. Proc Natl Acad Sci USA 98:3738–3743PubMedCrossRefGoogle Scholar
  6. Bulik DA, Wei G, Toyoda H, Kinoshita-Toyoda A, Waldrip WR, Esko JD, Robbins PW, Selleck SB (2000) sqv-3,-7, and -8, a set of genes affecting morphogenesis in Caenorhabditis elegans, encode enzymes required for glycosaminoglycan biosynthesis. Proc Natl Acad Sci USA 97:10838–10843PubMedCrossRefGoogle Scholar
  7. Esko JD (1991) Genetic analysis of proteoglycan structure, function and metabolism. Curr Opin Cell Biol 3:805–816PubMedCrossRefGoogle Scholar
  8. Gotting C, Kuhn J, Zahn R, Brinkmann T, Kleesiek K (2000) Molecular cloning and expression of human UDP-D-Xylose:proteoglycan core protein β-D-xylosyltransferase and its first isoform XT-II. J Mol Biol 304:517–528PubMedCrossRefGoogle Scholar
  9. Helting T, Roden L (1969) Biosynthesis of chondroitin sulfate. I. Galactosyl transfer in the formation of the carbohydrate-protein linkage region. J Biol Chem 244:2790–2798PubMedGoogle Scholar
  10. Hennet T, Dinter A, Kuhnert P, Mattu TS, Rudd PM, Berger EG (1998) Genomic cloning and expression of three murine UDP-galactose: β-N-acetylglucosamine β1,3-galactosyltransferase genes. J Biol Chem 273:58–65PubMedCrossRefGoogle Scholar
  11. Herman T, Hartwieg E, Horvitz HR (1999) sqv mutants of Caenorhabditis elegans are defective in vulval epithelial invagination. Proc Natl Acad Sci USA 96:968–973PubMedCrossRefGoogle Scholar
  12. Horwitz AL, Dorfman A (1968) Subcellular sites for synthesis of chondromucoprotein of cartilage. J Cell Biol 38:358–368PubMedCrossRefGoogle Scholar
  13. Hwang HY, Horvitz HR (2002a) The Caenorhabditis elegans vulval morphogenesis gene sqv-4 encodes a UDP-glucose dehydrogenase that is temporally and spatially regulated. Proc Natl Acad Sci USA 99:14224–14229PubMedCrossRefGoogle Scholar
  14. Hwang HY, Horvitz HR (2002b) The SQV-1 UDP-glucuronic acid decarboxylase and the SQV-7 nucleotide-sugar transporter may act in the Golgi apparatus to affect Caenorhabditis elegans vulval morphogenesis and embryonic development. Proc Natl Acad Sci USA 99:14218–14223PubMedCrossRefGoogle Scholar
  15. Hwang HY, Olson SK, Brown JR, Esko JD, Horvitz HR (2003) The Caenorhabditis elegans genes sqv-2 and sqv-6, which are required for vulval morphogenesis, encode glycosaminoglycan galactosyltransferase II and xylosyltransferase. J Biol Chem 278:11735–11738PubMedCrossRefGoogle Scholar
  16. Isshiki S, Togayachi A, Kudo T, Nishihara S, Watanabe M, Kubota T, Kitajima M, Shiraishi N, Sasaki K, Andoh T, Narimatsu H (1999) Cloning, expression, and characterization of a novel UDP-galactose:β-N-acetylglucosamine β1,3-galactosyltransferase (β3Gal-T5) responsible for synthesis of type 1 chain in colorectal and pancreatic epithelia and tumor cells derived therefrom. J Biol Chem 274:12499–12507PubMedCrossRefGoogle Scholar
  17. Ju T, Brewer K, D’Souza A, Cummings RD, Canfield WM (2002) Cloning and expression of human core 1 β1,3-galactosyltransferase. J Biol Chem 277:178–186PubMedCrossRefGoogle Scholar
  18. Kitagawa H, Tone Y, Tamura J, Neumann KW, Ogawa T, Oka S, Kawasaki T, Sugahara K (1998) Molecular cloning and expression of glucuronyltransferase I involved in the biosynthesis of the glycosaminoglycan-protein linkage region of proteoglycans. J Biol Chem 273:6615–6618PubMedCrossRefGoogle Scholar
  19. Kolbinger F, Streiff MB, Katopodis AG (1998) Cloning of a human UDP-galactose: 2-acetamido-2-deoxy-D-glucose 3β-galactosyltransferase catalyzing the formation of type 1 chains. J Biol Chem 273:433–440PubMedCrossRefGoogle Scholar
  20. Lin X, Perrimon N (2002) Developmental roles of heparan sulfate proteoglycans in Drosophila. Glycoconjugate J 19:363–368CrossRefGoogle Scholar
  21. Miyazaki H, Fukumoto S, Okada M, Hasegawa T, Furukawa K (1997) Expression cloning of rat cDNA encoding UDP-galactose:GD2 β1,3-galactosyltransferase that determines the expression of GD1b/GM1/GA1. J Biol Chem 272:24794–24799PubMedCrossRefGoogle Scholar
  22. Okajima T, Fukumoto S, Furukawa K, Urano T (1999a) Molecular basis for the progeroid variant of Ehlers-Danlos syndrome. Identification and characterization of two mutations in galactosyltransferase I gene. J Biol Chem 274:28841–28844PubMedCrossRefGoogle Scholar
  23. Okajima T, Yoshida K, Kondo T, Furukawa K (1999b) Human homolog of Caenorhabditis elegans sqv-3 gene is galactosyltransferase I involved in the biosynthesis of the glycosaminoglycan-protein linkage region of proteoglycans. J Biol Chem 274:22915–22918PubMedCrossRefGoogle Scholar
  24. Ponighaus C, Ambrosius M, Casanova JC, Prante C, Kuhn J, Esko JD, Kleesiek K, Gotting C (2007) Human xylosyltransferase II is involved in the biosynthesis of the uniform tetrasaccharide linkage region in chondroitin sulfate and heparan sulfate proteoglycans. J Biol Chem 282:5201–5206PubMedCrossRefGoogle Scholar
  25. Quentin E, Gladen A, Roden L, Kresse H (1990) A genetic defect in the biosynthesis of dermatan sulfate proteoglycan: galactosyltransferase I deficiency in fibroblasts from a patient with a progeroid syndrome. Proc Natl Acad Sci USA 87:1342–1346PubMedCrossRefGoogle Scholar
  26. Selleck SB (2001) Genetic dissection of proteoglycan function in Drosophila and C. elegans. Semin Cell Dev Biol 12:127–134PubMedCrossRefGoogle Scholar
  27. Ueyama M, Takemae H, Ohmae Y, Yoshida H, Toyoda H, Ueda R, Nishihara S (2008) Functional analysis of proteoglycan galactosyltransferase II RNA interference mutant flies. J Biol Chem 283:6076–6084PubMedCrossRefGoogle Scholar
  28. van der Zwaag B, Franke L, Poot M, Hochstenbach R, Spierenburg HA, Vorstman JA, van Daalen E, de Jonge MV, Verbeek NE, Brilstra EH, van ‘t Slot RA, Ophoff R, van Es MA, Blauw HM, Veldink JH, Buizer-Voskamp JE, Beemer FA, van den Berg LH, Wijmenga C, van Amstel HK, Van Engeland H, Burbach JP, Staal WG (2009) Gene-network analysis identifies susceptibility genes related to glycobiology in autism. PLoS One 4:e5324PubMedCentralPubMedCrossRefGoogle Scholar
  29. Wei G, Bai X, Sarkar AK, Esko JD (1999) Formation of HNK-1 determinants and the glycosaminoglycan tetrasaccharide linkage region by UDP-GlcUA:galactoseβ1,3-glucuronosyltransferases. J Biol Chem 274:7857–7864PubMedCrossRefGoogle Scholar
  30. Zak BM, Crawford BE, Esko JD (2002) Hereditary multiple exostoses and heparan sulfate polymerization. Biochim Biophys Acta 1573:346–355PubMedCrossRefGoogle Scholar
  31. Zhou D, Berger EG, Hennet T (1999a) Molecular cloning of a human UDP-galactose: GlcNAcβ1,3GalNAc β1,3 galactosyltransferase gene encoding an O-linked core3-elongation enzyme. Eur J Biochem 263:571–576PubMedCrossRefGoogle Scholar
  32. Zhou D, Dinter A, Gutierrez Gallego R, Kamerling JP, Vliegenthart JF, Berger EG, Hennet T (1999b) A β1,3-N-acetylglucosaminyltransferase with poly-N-acetyllactosamine synthase activity is structurally related to β1,3-galactosyltransferases. Proc Natl Acad Sci USA 96:406–411PubMedCrossRefGoogle Scholar
  33. Zhou D, Dinter A, Gutierrez Gallego R, Kamerling JP, Vliegenthart JF, Berger EG, Hennet T (2000) Correction to: A β1,3-N-acetylglucosaminyltransferase with poly-N-acetyllactosamine synthase activity is structurally related to β1,3-galactosyltransferases. Proc Natl Acad Sci USA 97:11673–11675Google Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  • Malene Bech Vester-Christensen
    • 1
  • Lars Hansen
    • 1
  • Henrik Clausen
    • 1
  1. 1.Copenhagen Center for Glycomics, Department of Cellular and Molecular MedicineUniversity of Copenhagen, Institute of Health ScienceCopenhagen NDenmark

Personalised recommendations