Skip to main content

Beta1,3-N-Acetylgalactosaminyltransferase 2 (B3GALNT2)

  • Reference work entry
  • First Online:
Handbook of Glycosyltransferases and Related Genes

Abstract

Τηε β1,3-glycosyltransferases (β3GT) family consists of β1,3-galactosyltransferases (B3GALT), β1,3-N-acetylglucosaminyltransferases (B3GNT), and β1,3-N-acetylgalactosaminyltransferase (B3GALNT). Based on a comparison of the sequences of four β3GALT, three conserved sequences (β3GT motifs) were found in the catalytic domain of the β3GT family except for B3GNT1 (Isshiki et al. 1999). Three β3GT motifs are (I/L)RxxWG, (F/Y)(V/L/M)xxxDXD, and (E/D)D(A/V)(Y/F)xGx(C/S) found in more than 20 β3GT genes (Narimatsu 2006; Togayachi et al. 2006). By a BLAST search using the β3GT motifs, a human B3GALNT2 cDNA encoding 500 amino acids was identified and cloned (Hiruma et al. 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bai X, Zhou D, Brown JR, Crawford BE, Hennet T, Esko JD (2001) Biosynthesis of the linkage region of glycosaminoglycans: cloning and activity of galactosyltransferase II, the sixth member of the β1,3-galactosyltransferase family (β3GalT6). J Biol Chem 276:48189–48195

    CAS  PubMed  Google Scholar 

  • Bao X, Kobayashi M, Hatakeyama S, Angata K, Gullberg D, Nakayama J, Fukuda MN, Fukuda M (2009) Tumor suppressor function of laminin-binding α-dystroglycan requires a distinct β3-N-acetylglucosaminyltransferase. Proc Natl Acad Sci U S A 106:12109–12114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barresi R, Campbell KP (2006) Dystroglycan: from biosynthesis to pathogenesis of human disease. J Cell Sci 119:199–207

    Article  CAS  PubMed  Google Scholar 

  • Buysse K, Riemersma M, Powell G, van Reeuwijk J, Chitayat D, Roscioli T, Kamsteeg EJ, van den Elzen C, van Beusekom E, Blaser S, Babul-Hirji R, Halliday W, Wright GJ, Stemple DL, Lin YY, Lefeber DJ, van Bokhoven H (2013) Missense mutations in β-1,3-N-acetylglucosaminyltransferase 1 (B3GNT1) cause Walker-Warburg syndrome. Hum Mol Genet 22:1746–1754

    Article  CAS  PubMed  Google Scholar 

  • Grewal PK, Hewitt JE (2003) Glycosylation defects: a new mechanism for muscular dystrophy? Hum Mol Genet 12:R259–R264

    Article  CAS  PubMed  Google Scholar 

  • Harrison R, Hitchen PG, Panico M, Morris HR, Mekhaiel D, Pleass RJ, Dell A, Hewitt JE, Haslam SM (2012) Glycoproteomic characterization of recombinant mouse α-dystroglycan. Glycobiology 22:662–675

    Article  CAS  PubMed  Google Scholar 

  • Hiruma T, Togayachi A, Okamura K, Sato T, Kikuchi N, Kwon YD, Nakamura A, Fujimura K, Gotoh M, Tachibana K, Ishizuka Y, Noce T, Nakanishi H, Narimatsu H (2004) A novel human β1,3-N-acetylgalactosaminyltransferase that synthesizes a unique carbohydrate structure, GalNAcb1-3GlcNAc. J Biol Chem 279:14087–14095

    Article  CAS  PubMed  Google Scholar 

  • Inamori K, Yoshida-Moriguchi T, Hara Y, Anderson ME, Yu L, Campbell KP (2012) Dystroglycan function requires xylosyl- and glucuronyltransferase activities of LARGE. Science 335:93–96

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Isshiki S, Togayachi A, Kudo T, Nishihara S, Watanabe M, Kubota T, Kitajima M, Shiraishi N, Sasaki K, Andoh T, Narimatsu H (1999) Cloning, expression, and characterization of a novel UDP-galactose:b-N-acetylglucosamine β1,3-galactosyltransferase (β3Gal-T5) responsible for synthesis of type 1 chain in colorectal and pancreatic epithelia and tumor cells derived there from. J Biol Chem 274:12499–12507

    Article  CAS  PubMed  Google Scholar 

  • Jae LT, Raaben M, Riemersma M, van Beusekom E, Blomen VA, Velds A, Kerkhoven RM, Carette JE, Topaloglu H, Meinecke P, Wessels MW, Lefeber DJ, Whelan SP, van Bokhoven H, Brummelkamp TR (2013) Deciphering the glycosylome of dystroglycanopathies using haploid screens for lassa virus entry. Science 340:479–483

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muntoni F, Torelli S, Wells DJ, Brown SC (2011) Muscular dystrophies due to glycosylation defects: diagnosis and therapeutic strategies. Curr Opin Neurol 24:437–442

    Article  CAS  PubMed  Google Scholar 

  • Nakamura N, Lyalin D, Panin VM (2010) Protein O-mannosylation in animal development and physiology: from human disorders to Drosophila phenotypes. Semin Cell Dev Biol 21:622–630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Narimatsu H (2006) Human glycogene cloning: focus on β3-glycosyltransferase and β4-glycosyltransferase families. Curr Opin Struct Biol 16:567–575

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Sato M, Kiyohara K, Sogabe M, Shikanai T, Kikuchi N, Togayachi A, Ishida H, Ito H, Kameyama A, Gotoh M, Narimatsu H (2006) Molecular cloning and characterization of a novel human β1,3-glucosyltransferase, which is localized at the endoplasmic reticulum and glucosylates O-linked fucosylglycan on thrombospondin type 1 repeat domain. Glycobiology 16:1194–1206

    Article  CAS  PubMed  Google Scholar 

  • Stalnaker SH, Stuart R, Wells L (2011) Mammalian O-mannosylation: unsolved questions of structure/function. Curr Opin Struct Biol 21:603–609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stevens E, Carss KJ, Cirak S, Foley AR, Torelli S, Willer T, Tambunan DE, Yau S, Brodd L, Sewry CA, Feng L, Haliloglu G, Orhan D, Dobyns WB, Enns GM, Manning M, Krause A, Salih MA, Walsh CA, Hurles M, Campbell KP, Manzini MC, UK10K Consortium, Stemple D, Lin YY, Muntoni F (2013) Mutations in B3GALNT2 cause congenital muscular dystrophy and hypoglycosylation of α-dystroglycan. Am J Hum Genet 92:354–365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Togayachi A, Sato T, Narimatsu H (2006) Comprehensive enzymatic characterization of glycosyltransferases with a β3GT or β4GT motif. Methods Enzymol 416:91–102

    Article  CAS  PubMed  Google Scholar 

  • Wright KM, Lyon KA, Leung H, Leahy DJ, Ma L, Ginty DD (2012) Dystroglycan organizes axon guidance cue localization and axonal pathfinding. Neuron 76:931–944

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshida-Moriguchi T, Yu L, Stalnaker SH, Davis S, Kunz S, Madson M, Oldstone MB, Schachter H, Wells L, Campbell KP (2010) O-mannosyl phosphorylation of alpha-dystroglycan is required for laminin binding. Science 327:88–92

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshida-Moriguchi T, Willer T, Anderson ME, Venzke D, Whyte T, Muntoni F, Lee H, Nelson SF, Yu L, Campbell KP (2013) SGK196 is a glycosylation-specific O-mannose kinase required for dystroglycan function. Science 341:896–899

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyohiko Angata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this entry

Cite this entry

Angata, K., Sato, T., Togayachi, A., Narimatsu, H. (2014). Beta1,3-N-Acetylgalactosaminyltransferase 2 (B3GALNT2). In: Taniguchi, N., Honke, K., Fukuda, M., Narimatsu, H., Yamaguchi, Y., Angata, T. (eds) Handbook of Glycosyltransferases and Related Genes. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54240-7_165

Download citation

Publish with us

Policies and ethics