Advertisement

Beta1,3-N-Acetylgalactosaminyltransferase 2 (B3GALNT2)

  • Kiyohiko Angata
  • Takashi Sato
  • Akira Togayachi
  • Hisashi Narimatsu
Reference work entry

Abstract

Τηε β1,3-glycosyltransferases (β3GT) family consists of β1,3-galactosyltransferases (B3GALT), β1,3-N-acetylglucosaminyltransferases (B3GNT), and β1,3-N-acetylgalactosaminyltransferase (B3GALNT). Based on a comparison of the sequences of four β3GALT, three conserved sequences (β3GT motifs) were found in the catalytic domain of the β3GT family except for B3GNT1 (Isshiki et al. 1999). Three β3GT motifs are (I/L)RxxWG, (F/Y)(V/L/M)xxxDXD, and (E/D)D(A/V)(Y/F)xGx(C/S) found in more than 20 β3GT genes (Narimatsu 2006; Togayachi et al. 2006). By a BLAST search using the β3GT motifs, a human B3GALNT2 cDNA encoding 500 amino acids was identified and cloned (Hiruma et al. 2004).

Keywords

Acceptor Substrate Congenital Muscular Dystrophy Lectin Blotting Lassa Virus GlcNAc Transferase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bai X, Zhou D, Brown JR, Crawford BE, Hennet T, Esko JD (2001) Biosynthesis of the linkage region of glycosaminoglycans: cloning and activity of galactosyltransferase II, the sixth member of the β1,3-galactosyltransferase family (β3GalT6). J Biol Chem 276:48189–48195PubMedGoogle Scholar
  2. Bao X, Kobayashi M, Hatakeyama S, Angata K, Gullberg D, Nakayama J, Fukuda MN, Fukuda M (2009) Tumor suppressor function of laminin-binding α-dystroglycan requires a distinct β3-N-acetylglucosaminyltransferase. Proc Natl Acad Sci U S A 106:12109–12114PubMedCentralPubMedCrossRefGoogle Scholar
  3. Barresi R, Campbell KP (2006) Dystroglycan: from biosynthesis to pathogenesis of human disease. J Cell Sci 119:199–207PubMedCrossRefGoogle Scholar
  4. Buysse K, Riemersma M, Powell G, van Reeuwijk J, Chitayat D, Roscioli T, Kamsteeg EJ, van den Elzen C, van Beusekom E, Blaser S, Babul-Hirji R, Halliday W, Wright GJ, Stemple DL, Lin YY, Lefeber DJ, van Bokhoven H (2013) Missense mutations in β-1,3-N-acetylglucosaminyltransferase 1 (B3GNT1) cause Walker-Warburg syndrome. Hum Mol Genet 22:1746–1754PubMedCrossRefGoogle Scholar
  5. Grewal PK, Hewitt JE (2003) Glycosylation defects: a new mechanism for muscular dystrophy? Hum Mol Genet 12:R259–R264PubMedCrossRefGoogle Scholar
  6. Harrison R, Hitchen PG, Panico M, Morris HR, Mekhaiel D, Pleass RJ, Dell A, Hewitt JE, Haslam SM (2012) Glycoproteomic characterization of recombinant mouse α-dystroglycan. Glycobiology 22:662–675PubMedCrossRefGoogle Scholar
  7. Hiruma T, Togayachi A, Okamura K, Sato T, Kikuchi N, Kwon YD, Nakamura A, Fujimura K, Gotoh M, Tachibana K, Ishizuka Y, Noce T, Nakanishi H, Narimatsu H (2004) A novel human β1,3-N-acetylgalactosaminyltransferase that synthesizes a unique carbohydrate structure, GalNAcb1-3GlcNAc. J Biol Chem 279:14087–14095PubMedCrossRefGoogle Scholar
  8. Inamori K, Yoshida-Moriguchi T, Hara Y, Anderson ME, Yu L, Campbell KP (2012) Dystroglycan function requires xylosyl- and glucuronyltransferase activities of LARGE. Science 335:93–96PubMedCentralPubMedCrossRefGoogle Scholar
  9. Isshiki S, Togayachi A, Kudo T, Nishihara S, Watanabe M, Kubota T, Kitajima M, Shiraishi N, Sasaki K, Andoh T, Narimatsu H (1999) Cloning, expression, and characterization of a novel UDP-galactose:b-N-acetylglucosamine β1,3-galactosyltransferase (β3Gal-T5) responsible for synthesis of type 1 chain in colorectal and pancreatic epithelia and tumor cells derived there from. J Biol Chem 274:12499–12507PubMedCrossRefGoogle Scholar
  10. Jae LT, Raaben M, Riemersma M, van Beusekom E, Blomen VA, Velds A, Kerkhoven RM, Carette JE, Topaloglu H, Meinecke P, Wessels MW, Lefeber DJ, Whelan SP, van Bokhoven H, Brummelkamp TR (2013) Deciphering the glycosylome of dystroglycanopathies using haploid screens for lassa virus entry. Science 340:479–483PubMedCentralPubMedCrossRefGoogle Scholar
  11. Muntoni F, Torelli S, Wells DJ, Brown SC (2011) Muscular dystrophies due to glycosylation defects: diagnosis and therapeutic strategies. Curr Opin Neurol 24:437–442PubMedCrossRefGoogle Scholar
  12. Nakamura N, Lyalin D, Panin VM (2010) Protein O-mannosylation in animal development and physiology: from human disorders to Drosophila phenotypes. Semin Cell Dev Biol 21:622–630PubMedCentralPubMedCrossRefGoogle Scholar
  13. Narimatsu H (2006) Human glycogene cloning: focus on β3-glycosyltransferase and β4-glycosyltransferase families. Curr Opin Struct Biol 16:567–575PubMedCrossRefGoogle Scholar
  14. Sato T, Sato M, Kiyohara K, Sogabe M, Shikanai T, Kikuchi N, Togayachi A, Ishida H, Ito H, Kameyama A, Gotoh M, Narimatsu H (2006) Molecular cloning and characterization of a novel human β1,3-glucosyltransferase, which is localized at the endoplasmic reticulum and glucosylates O-linked fucosylglycan on thrombospondin type 1 repeat domain. Glycobiology 16:1194–1206PubMedCrossRefGoogle Scholar
  15. Stalnaker SH, Stuart R, Wells L (2011) Mammalian O-mannosylation: unsolved questions of structure/function. Curr Opin Struct Biol 21:603–609PubMedCentralPubMedCrossRefGoogle Scholar
  16. Stevens E, Carss KJ, Cirak S, Foley AR, Torelli S, Willer T, Tambunan DE, Yau S, Brodd L, Sewry CA, Feng L, Haliloglu G, Orhan D, Dobyns WB, Enns GM, Manning M, Krause A, Salih MA, Walsh CA, Hurles M, Campbell KP, Manzini MC, UK10K Consortium, Stemple D, Lin YY, Muntoni F (2013) Mutations in B3GALNT2 cause congenital muscular dystrophy and hypoglycosylation of α-dystroglycan. Am J Hum Genet 92:354–365PubMedCentralPubMedCrossRefGoogle Scholar
  17. Togayachi A, Sato T, Narimatsu H (2006) Comprehensive enzymatic characterization of glycosyltransferases with a β3GT or β4GT motif. Methods Enzymol 416:91–102PubMedCrossRefGoogle Scholar
  18. Wright KM, Lyon KA, Leung H, Leahy DJ, Ma L, Ginty DD (2012) Dystroglycan organizes axon guidance cue localization and axonal pathfinding. Neuron 76:931–944PubMedCentralPubMedCrossRefGoogle Scholar
  19. Yoshida-Moriguchi T, Yu L, Stalnaker SH, Davis S, Kunz S, Madson M, Oldstone MB, Schachter H, Wells L, Campbell KP (2010) O-mannosyl phosphorylation of alpha-dystroglycan is required for laminin binding. Science 327:88–92PubMedCentralPubMedCrossRefGoogle Scholar
  20. Yoshida-Moriguchi T, Willer T, Anderson ME, Venzke D, Whyte T, Muntoni F, Lee H, Nelson SF, Yu L, Campbell KP (2013) SGK196 is a glycosylation-specific O-mannose kinase required for dystroglycan function. Science 341:896–899PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  • Kiyohiko Angata
    • 1
  • Takashi Sato
    • 1
  • Akira Togayachi
    • 1
  • Hisashi Narimatsu
    • 1
  1. 1.Research Center for Medical GlycoscienceNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan

Personalised recommendations