Heparin-Heparansulfate Related GlcA C5-Epimerase

  • Jin-ping Li
Reference work entry


The glucuronyl C5-epimerase is a key enzyme in the biosynthesis of heparan sulfate (HS) and heparin, a group of polysaccharide composed of alternating hexuronic acid and glucosamine residues. Both species are synthesized as proteoglycans, but on different core proteins (Esko 1991). Heparin is essentially only expressed by connective-tissue-type mast cells, whereas HS is produced by all other mammalian (and many nonmammalian) cells. The process of HS and heparin biosynthesis is initiated by glycosylation of the core proteins through covalently binding to the serine residues in respective core proteins. The process generates polysaccharide sequences that are composed of alternating d-glucuronic acid (GlcA) and N-acetyl-d-glucosamine (GlcNAc) units with varied chain length. The resulting polymer of (GlcAß1,4-GlcNAca1,4)n disaccharide repeats is modified through a series of reactions, including N-deacetylation/N-sulfation of GlcNAc residues, C5-epimerization of the GlcA units to yield l-iduronic acid (IdoA) residues, and finally O-sulfation at various positions of the sugar residues (Lindahl and Li 2009). The modification reactions occur in a stepwise manner, such that early steps provide the substrates for subsequent reactions. Heparin is extensively sulfated and has a high content of IdoA (typically 50–90 % of the total hexuronic acid), whereas HS has a more varied structure, generally less sulfated and with lower IdoA content than heparin (typically 30–55 % of the total hexuronic acid) (Taylor et al. 1973).


Heparan Sulfate Hexuronic Acid GlcA Residue Mouse Embryo Fibroblast Cell Crude Heparin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Babu P, Victor XV, Nelsen E, Nguyen TK, Raman K, Kuberan B (2011) Hydrogen/deuterium exchange-LC-MS approach to characterize the action of heparan sulfate C5-epimerase. Anal Bioanal Chem 401(1):237–244PubMedCentralPubMedCrossRefGoogle Scholar
  2. Bishop JR, Schuksz M, Esko JD (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446(7139):1030–1037PubMedCrossRefGoogle Scholar
  3. Bulow HE, Hobert O (2004) Differential sulfations and epimerization define heparan sulfate specificity in nervous system development. Neuron 41(5):723–736PubMedCrossRefGoogle Scholar
  4. Campbell P, Feingold DS, Jensen JW, Malmström A, Rodén L (1983) New assay for uronosyl 5-Epimerases. Anal Biochem 131:146–152PubMedCrossRefGoogle Scholar
  5. Campbell P, Hannesson HH, Sandbäck D, Rodén L, Lindahl U, Li J-P (1994) Biosynthesis of heparin/heparan sulfate. Purification of the D-glucuronyl C-5 epimerase from bovine liver. J Biol Chem 269(43):26953–26958PubMedGoogle Scholar
  6. Casu B, Petitou M, Provasoli M, Sinay P (1988) Conformational flexibility: a new concept for explaining binding and biological properties of iduronic acid-containing glycosaminoglycans. Trends Biochem Sci 13(6):221–225PubMedCrossRefGoogle Scholar
  7. Crawford BE, Olson SK, Esko JD, Pinhal MA (2001) Cloning, Golgi localization, and enzyme activity of the full-length heparin/heparan sulfate-glucuronic acid C5-epimerase. J Biol Chem 276(24):21538–21543PubMedGoogle Scholar
  8. Esko JD (1991) Genetic analysis of proteoglycan structure, function and metabolism. Curr Opin Cell Biol 3:805–816PubMedCrossRefGoogle Scholar
  9. Gallagher JT (2001) Heparan sulfate: growth control with a restricted sequence menu. J Clin Invest 108(3):357–361PubMedCentralPubMedCrossRefGoogle Scholar
  10. Ghiselli G, Farber SA (2005) D-glucuronyl C5-epimerase acts in dorso-ventral axis formation in zebrafish. BMC Dev Biol 5:19PubMedCentralPubMedCrossRefGoogle Scholar
  11. Gong F, Jemth P, Escobar Galvis ML, Vlodavsky I, Horner A, Lindahl U, Li JP (2003) Processing of macromolecular heparin by heparanase. J Biol Chem 278(37):35152–35158PubMedCrossRefGoogle Scholar
  12. Gray E, Mulloy B, Barrowcliffe TW (2008) Heparin and low-molecular-weight heparin. Thromb Haemost 99(5):807–818PubMedGoogle Scholar
  13. Grigorieva E, Eshchenko T, Rykova VI, Chernakov A, Zabarovsky E, Sidorov SV (2008) Decreased expression of human D-glucuronyl C5-epimerase in breast cancer. Int J Cancer 122(5):1172–1176PubMedCrossRefGoogle Scholar
  14. Grigorieva EV, Prudnikova TY, Domanitskaya NV, Mostovich LA, Pavlova TV, Kashuba VI, Zabarovsky ER (2011) D-glucuronyl C5-epimerase suppresses small-cell lung cancer cell proliferation in vitro and tumour growth in vivo. Br J Cancer 105(1):74–82PubMedCentralPubMedCrossRefGoogle Scholar
  15. Hagner-McWhirter A, Hannesson HH, Campbell P, Westley J, Roden L, Lindahl U, Li J-P (2000a) Biosynthesis of heparin/heparan sulfate: kinetic studies of the glucuronyl C5-epimerase with N-sulfated derivatives of the escherichia coli K5 capsular polysaccharide as substrates. Glycobiology 10(2):159–171. [In Process Citation]PubMedGoogle Scholar
  16. Hagner-Mcwhirter A, Lindahl U, Li J-P (2000b) Biosynthesis of heparin/heparan sulphate: mechanism of epimerization of glucuronyl C-5. Biochem J 347:69–75PubMedCrossRefGoogle Scholar
  17. Hagner-McWhirter A, Li JP, Oscarson S, Lindahl U (2004) Irreversible glucuronyl C5-epimerization in the biosynthesis of heparan sulfate. J Biol Chem 279(15):14631–14638PubMedCrossRefGoogle Scholar
  18. Höök M, Lindahl U, Backstrom G, Malmstrom A, Fransson L (1974) Biosynthesis of heparin. 3. Formation of iduronic acid residues. J Biol Chem 249(12):3908–3915PubMedGoogle Scholar
  19. Jacobsson I, Bäckström G, Höök M, Lindahl U, Feingold DS, Malmström A, Rodén L (1979) Biosynthesis of heparin. Assay and properties of the microsomal uronosyl C-5 epimerase. J Biol Chem 254(8):2975–2982PubMedGoogle Scholar
  20. Jacobsson I, Lindahl U, Jensen JW, Rodén L, Prihar H, Feingold DS (1984) Biosynthesis of heparin. Substrate specificity of heparosan N-sulfate d-glucuronosyl 5-epimerase. J Biol Chem 259:1056–1063PubMedGoogle Scholar
  21. Jia J, Maccarana M, Zhang X, Bespalov M, Lindahl U, Li JP (2009) Lack of l-iduronic acid in heparan sulfate affects interaction with growth factors and cell signaling. J Biol Chem 284(23):15942–15950PubMedCrossRefGoogle Scholar
  22. Kuberan B, Lech MZ, Beeler DL, Wu ZL, Rosenberg RD (2003) Enzymatic synthesis of antithrombin III-binding heparan sulfate pentasaccharide. Nat Biotechnol 21(11):1343–1346PubMedCrossRefGoogle Scholar
  23. Lander AD, Selleck SB (2000) The elusive functions of proteoglycans: in vivo veritas. J Cell Biol 148(2):227–232PubMedCrossRefGoogle Scholar
  24. Li JP (2010) Glucuronyl C5-epimerase an enzyme converting glucuronic acid to iduronic acid in heparan sulfate/heparin biosynthesis. Prog Mol Biol Transl Sci 93:59–78PubMedCrossRefGoogle Scholar
  25. Li J-P, Hagner-McWhirter A, Kjellen L, Palgi J, Jalkanen M, Lindahl U (1997) Biosynthesis of heparin/heparan sulfate. cDNA cloning and expression of D-glucuronyl C5-epimerase from bovine lung. J Biol Chem 272(44):28158–28163PubMedCrossRefGoogle Scholar
  26. Li JP, Gong F, El Darwish K, Jalkanen M, Lindahl U (2001) Characterization of the D-glucuronyl C5-epimerase involved in the biosynthesis of heparin and heparan sulfate. J Biol Chem 276(23):20069–20077PubMedCrossRefGoogle Scholar
  27. Li J-P, Gong F, Hagner-McWhirter Å, Forsberg E, Åbrink M, Kisilevsky R, Zhang X, Lindahl U (2003) Targeted disruption of a murine glucuronyl C5-epimerase gene results in heparan sulfate lacking L-iduronic acid and in neonatal lethality. J Biol Chem 278(31):28363–28366PubMedCrossRefGoogle Scholar
  28. Lindahl U, Li J-P (2009) Interactions between heparan sulfate and proteins – design and functional implications. Int Rev Cell Mol Biol 276(27603):105–159PubMedCrossRefGoogle Scholar
  29. Lindahl U, Kusche-Gullberg M, Kjellén L (1998) Regulated diversity of heparan sulfate. J Biol Chem 273(39):24979–24982PubMedCrossRefGoogle Scholar
  30. Lindahl U, Li JP, Kusche-Gullberg M, Salmivirta M, Alaranta S, Veromaa T, Emeis J, Roberts I, Taylor C, Oreste P, Zoppetti G, Naggi A, Torri G, Casu B (2005) Generation of “neoheparin” from E. coli K5 capsular polysaccharide. J Med Chem 48(2):349–352PubMedGoogle Scholar
  31. Maccarana M, Sakura Y, Tawada A, Yoshida K, Lindahl U (1996) Domain structure of heparan sulfates from bovine organs. J Biol Chem 271(30):17804–17810PubMedCrossRefGoogle Scholar
  32. Maccarana M, Olander B, Malmstrom J, Tiedemann K, Aebersold R, Lindahl U, Li JP, Malmstrom A (2006) Biosynthesis of dermatan sulfate: chondroitin-glucuronate C5-epimerase is identical to SART2. J Biol Chem 281(17):11560–11568PubMedCrossRefGoogle Scholar
  33. Malmström A, Åberg L (1982) Biosynthesis of dermatan sulfate: assay and properties of the uronyl C-5 epimerase. Biochem J 201:489–493PubMedGoogle Scholar
  34. Malmstrom A, Roden L, Feingold DS, Jacobsson I, Backstrom G, Lindahl U (1980) Biosynthesis of heparin. Partial purification of the uronosyl C-5 epimerase. J Biol Chem 255(9):3878–3883PubMedGoogle Scholar
  35. Mostovich LA, Prudnikova TY, Kondratov AG, Gubanova NV, Kharchenko OA, Kutsenko OS, Vavilov PV, Haraldson K, Kashuba VI, Ernberg I, Zabarovsky ER, Grigorieva EV (2012) The TCF4/beta-catenin pathway and chromatin structure cooperate to regulate D-glucuronyl C5-epimerase expression in breast cancer. Epigenetics 7(8):930–939PubMedCrossRefGoogle Scholar
  36. Nader HB, Chavante SF, dos-Santos EA, Oliveira TW, de-Paiva JF, Jeronimo SM, Medeiros GF, de-Abreu LR, Leite EL, de-Sousa-Filho JF, Castro RA, Toma L, Tersariol IL, Porcionatto MA, Dietrich CP (1999) Heparan sulfates and heparins: similar compounds performing the same functions in vertebrates and invertebrates? Braz J Med Biol Res 32(5):529–538PubMedCrossRefGoogle Scholar
  37. Peterson S, Frick A, Liu J (2009) Design of biologically active heparan sulfate and heparin using an enzyme-based approach. Nat Prod Rep 26(5):610–627PubMedCrossRefGoogle Scholar
  38. Prihar HS, Campbell P, Feingold DS, Jacobsson I, Jensen JW, Lindahl U, Rodén L (1980) Biosynthesis of heparin. Hydrogen exchange at carbon 5 of the glycuronosyl residues. Biochemistry 19:495–500PubMedCrossRefGoogle Scholar
  39. Salmivirta M, Lidholt K, Lindahl U (1996) Heparan sulfate: a piece of information. FASEB J 10(11):1270–1279PubMedGoogle Scholar
  40. Sheng J, Xu Y, Dulaney SB, Huang X, Liu J (2012) Uncovering biphasic catalytic mode of C5-epimerase in heparan sulfate biosynthesis. J Biol Chem 287(25):20996–21002PubMedCrossRefGoogle Scholar
  41. Smits NC, Kurup S, Rops AL, ten Dam GB, Massuger LF, Hafmans T, Turnbull JE, Spillmann D, Li JP, Kennel SJ, Wall JS, Shworak NW, Dekhuijzen PN, van der Vlag J, van Kuppevelt TH (2010) The heparan sulfate motif (GlcNS6S-IdoA2S)3, common in heparin, has a strict topography and is involved in cell behavior and disease. J Biol Chem 285(52):41143–41151PubMedCrossRefGoogle Scholar
  42. Taylor RL, Shively JE, Cifonelli JA (1973) Uronic acid composition of heparins and heparan sulfates. Biochemistry 12:3633–3637PubMedCrossRefGoogle Scholar
  43. Valla S, Li J, Ertesvag H, Barbeyron T, Lindahl U (2001) Hexuronyl C5-epimerases in alginate and glycosaminoglycan biosynthesis. Biochimie 83(8):819–830PubMedCrossRefGoogle Scholar
  44. Xu Y, Pempe EH, Liu J (2012) Chemoenzymatic synthesis of heparin oligosaccharides with both anti-factor Xa and anti-factor IIa activities. J Biol Chem 287(34):29054–29061PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.The Biomedical Center, Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden

Personalised recommendations