Glutamine–Fructose-6-Phosphate Transaminase 1,2 (GFPT1,2)

  • Kazuto Yamazaki
Reference work entry


l-Glutamine–d-fructose-6-phosphate transaminase (GFPT) is the first and rate-limiting enzyme of the hexosamine biosynthesis pathway (HBP). GFPT converts d-fructose-6-phosphate (Fru-6-P) and l-glutamine to d-glucosamine-6-phosphate (GlcN-6-P) and l-glutamate. GlcN-6-P is an essential precursor of hexosamines, such as uridine 5′-diphosphate-N-acetyl-d-glucosamine (UDP-GlcNAc). UDP-GlcNAc is a substrate for synthesis of glycoproteins, proteoglycans, and glycolipids and moreover for the posttranslational modification of proteins with O-linked β-N-acetylglucosamine (O-GlcNAc) on serine and threonine residues, which is an important step for the regulation of intracellular signaling. Figure 129.1 is a schematic representation of the HBP, which includes the synthesis of GlcNAcylated proteins.


Diabetic Nephropathy Endoplasmic Reticulum Stress High Glucose Level Blastocyst Formation Congenital Myasthenic Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Badet B, Vermoote P, Haumont PY, Lederer F, Le Goffic F (1987) Glucosamine synthetase from Escherichia coli: purification, properties, and glutamine-utilizing site location. Biochemistry 26:1940–1948PubMedCrossRefGoogle Scholar
  2. Becker CE, Day HG (1953) Utilization of glucosone and the synthesis of glucosamine in the rat. J Biol Chem 201:795–801PubMedGoogle Scholar
  3. Broschat KO, Gorka C, Kasten TP, Gulve EA, Kilpatrick B (2002a) A radiometric assay for glutamine:fructose-6-phosphate amidotransferase. Anal Biochem 305:10–15PubMedCrossRefGoogle Scholar
  4. Broschat KO, Gorka C, Page JD, Martin-Berger CL, Davies MS, Huang HC, Gulve EA, Salsgiver WJ, Kasten TP (2002b) Kinetic characterization of human glutamine-fructose-6-phosphate amidotransferase I: potent feedback inhibition by glucosamine 6-phosphate. J Biol Chem 277:14764–14770PubMedCrossRefGoogle Scholar
  5. Daniels MC, Ciaraldi TP, Nikoulina S, Henry RR, McClain DA (1996) Glutamine:fructose-6-phosphate amidotransferase activity in cultured human skeletal muscle cells relationship to glucose disposal rate in control and non – insulin-dependent diabetes mellitus subjects and regulation by glucose and insulin. J Clin Invest 97:1235–1241PubMedCentralPubMedCrossRefGoogle Scholar
  6. DeHaven JE, Robinson KA, Nelson BA, Buse MG (2001) A novel variant of glutamine:fructose-6-phosphate amidotransferase-1 (GFAT1) mRNA is selectively expressed in striated muscle. Diabetes 50:2419–2424PubMedCrossRefGoogle Scholar
  7. Elbein SC, Zheng H, Jia Y, Chu W, Cooper JJ, Hale T, Zhang Z (2004) Molecular screening of the human glutamine – fructose-6-phosphate amidotransferase 1 (GFPT1) gene and association studies with diabetes and diabetic nephropathy. Mol Genet Metab 82:321–328PubMedCrossRefGoogle Scholar
  8. Fricovsky ES, Suarez J, Ihm SH, Scott BT, Suarez-Ramirez JA, Banerjee I, Torres-Gonzalez M, Wang H, Ellrott I, Maya-Ramos L, Villarreal FJ, Dillmann WH (2012) Excess protein O-GlcNAcylation and the progression of diabetic cardiomyopathy. Am J Physiol Regul Integr Comp Physiol 303:R689–R699PubMedCrossRefGoogle Scholar
  9. Fülöp N, Feng W, Xing D, He K, Nőt LG, Brocks CA, Marchase RB, Miller AP, Chatham JC (2008) Aging leads to increased levels of protein O-linked N-acetylglucosamine in heart, aorta, brain and skeletal muscle in Brown-Norway rats. Biogerontology 9:139–151PubMedCentralPubMedCrossRefGoogle Scholar
  10. Ghosh S, Blumenthal HJ, Davidson E, Roseman S (1960) Glucosamine metabolism. V. Enzymatic synthesis of glucosamine 6-phosphate. J Biol Chem 235:1265–1273PubMedGoogle Scholar
  11. Guergueltcheva V, Müller JS, Dusl M, Senderek J, Oldfors A, Lindbergh C, Maxwell S, Colomer J, Mallebrera CJ, Nascimento A, Vilchez JJ, Muelas N, Kirschner J, Nafissi S, Kariminejad A, Nilipour Y, Bozorgmehr B, Najmabadi H, Rodolico C, Sieb JP, Schlotter B, Schoser B, Herrmann R, Voit T, Steinlein OK, Najafi A, Urtizberea A, Soler DM, Muntoni F, Hanna MG, Chaouch A, Straub V, Bushby K, Palace J, Beeson D, Abicht A, Lochmüller H (2011) Congenital myasthenic syndrome with tubular aggregates caused by GFPT1 mutations. J Neurol 259:838–850CrossRefGoogle Scholar
  12. Hebert LF Jr, Daniels MC, Zhou J, Crook ED, Turner RL, Simmons ST, Neidigh JL, Zhu JS, Baron AD, McClain DA (1996) Overexpression of glutamine:fructose-6-phosphate amidotransferase in transgenic mice leads to insulin resistance. J Clin Invest 98:930–936PubMedCentralPubMedCrossRefGoogle Scholar
  13. Hsieh TJ, Lin T, Hsieh PC, Liao MC, Shin SJ (2012) Suppression of glutamine:fructose-6-phosphate amidotransferase-1 inhibits adipogenesis in 3T3-L1 adipocytes. J Cell Physiol 227:108–115PubMedCrossRefGoogle Scholar
  14. Hu Y, Riesland L, Paterson AJ, Kudlow JE (2004) Phosphorylation of mouse glutamine-fructose-6-phosphate amidotransferase 2 (GFAT2) by cAMP-dependent protein kinase increases the enzyme activity. J Biol Chem 279:29988–29993PubMedCrossRefGoogle Scholar
  15. Isupov MN, Obmolova G, Butterworth S, Badet-Denisot MA, Badet B, Polikarpov I, Littlechild JA, Teplyakov A (1996) Substrate binding is required for assembly of the active conformation of the catalytic site in Ntn amidotransferases: evidence from the 1.8 Å crystal structure of the glutaminase domain of glucosamine 6-phosphate synthase. Structure 4:801–810PubMedCrossRefGoogle Scholar
  16. James LR, Le C, Scholey JW (2010) Influence of glucosamine on glomerular mesangial cell turnover: implications for hyperglycemia and hexosamine pathway flux. Am J Physiol Endocrinol Metab 298:E210–E221PubMedCrossRefGoogle Scholar
  17. Khai Huynh Q, Gulve EA, Dian T (2000) Purification and characterization of glutamine:fructose 6-phosphate amidotransferase from rat liver. Arch Biochem Biophys 379:307–313CrossRefGoogle Scholar
  18. Kornfeld R (1967) Studies on l-glutamine d-fructose 6-phosphate amidotransferase. I. Feedback inhibition by uridine diphosphate-N-acetylglucosamine. J Biol Chem 242:3135–3141PubMedGoogle Scholar
  19. Kunika K, Tanahashi T, Kudo E, Mizusawa N, Ichiishi E, Nakamura N, Yoshikawa T, Yamaoka T, Yasumo H, Tsugawa K, Moritani M, Inoue H, Itakura M (2006) Effect of +36T>C in intron 1 on the glutamine: fructose-6-phosphate amidotransferase 1 gene and its contribution to type 2 diabetes in different populations. J Hum Genet 51:1100–1109PubMedCrossRefGoogle Scholar
  20. Leloire LF, Cardini CE (1953) The biosynthesis of glucosamine. Biochim Biophys Acta 12:15–22CrossRefGoogle Scholar
  21. Li Y, Lopez P, Durand P, Ouazzani J, Badet B, Badet-Denisot MA (2007a) An enzyme-coupled assay for amidotransferase activity of glucosamine-6-phosphate synthase. Anal Biochem 370:142–146PubMedCrossRefGoogle Scholar
  22. Li Y, Roux C, Lazereg S, LeCaer JP, Laprévote O, Badet B, Badet-Denisot MA (2007b) Identification of a novel serine phosphorylation site in human glutamine:fructose-6-phosphate amidotransferase isoform 1. Biochemistry 46:13163–13169PubMedCrossRefGoogle Scholar
  23. Liu J, Marchase RB, Chatham JC (2007) Glutamine-induced protection of isolated rat heart from ischemia/reperfusion injury is mediated via the hexosamine biosynthesis pathway and increased protein O-GlcNAc levels. J Mol Cell Cardiol 42:177–185PubMedCentralPubMedCrossRefGoogle Scholar
  24. Liu K, Wang G, Zhao SH, Liu B, Huang JN, Bai X, Yu M (2010) Molecular characterization, chromosomal location, alternative splicing and polymorphism of porcine GFAT1 gene. Mol Biol Rep 37:2711–2717PubMedCrossRefGoogle Scholar
  25. Lunde IG, Aronsen JM, Kvaløy H, Qvigstad E, Sjaastad I, Tønnessen T, Christensen G, Grønning-Wang LM, Carlson CR (2012) Cardiac O-GlcNAc signaling is increased in hypertrophy and heart failure. Physiol Genomics 44:162–172PubMedCrossRefGoogle Scholar
  26. Maillard LT, Guérineau V, Badet-Deisot MA, Badet B, Laprévote O, Durand P (2006) Monitoring enzyme-catalyzed production of glucosamine-6P by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: a new enzymatic assay for glucosamine-6P synthase. Rapid Commun Mass Spectrom 20:666–672PubMedCrossRefGoogle Scholar
  27. Manzari B, Kudlow JE, Fardin P, Merello E, Ottaviano C, Puppo M, Eva A, Varesio L (2007) Induction of macrophage glutamine:fructose-6-phosphate amidotransferase expression by hypoxia and by picolinic acid. Int J Immunopathol Pharmacol 20:47–58PubMedGoogle Scholar
  28. McClain DA (2002) Hexosamines as mediators of nutrient sensing and regulation in diabetes. J Diabetes Complications 16:72–80PubMedCrossRefGoogle Scholar
  29. McClain DA, Alexander T, Cooksey RC, Considine RV (2000) Hexosamines stimulate leptin production in transgenic mice. Endocrinology 141:1999–2002PubMedCrossRefGoogle Scholar
  30. McKnight GL, Mudri SL, Mathewes SL, Traxinger RR, Marshall S, Sheppard PO, O’Hara PJ (1992) Molecular cloning, cDNA sequence, and bacterial expression of human glutamine:fructose-6-phosphate amidotransferase. J Biol Chem 267:25208–25212PubMedGoogle Scholar
  31. Miura N, Kaneko S, Hosoya S, Furuchi T, Miura K, Kuge S, Naganuma A (1999) Overexpression of l-glutamine:d-fructose-6-phosphate amidotransferase provides resistance to methylmercury in Saccharomyces cerevisiae. FEBS Lett 458:215–218PubMedCrossRefGoogle Scholar
  32. Nakaishi Y, Bando M, Shimizu H, Watanabe K, Goto F, Tsuge H, Kondo K, Komatsu M (2009) Structural analysis of human glutamine:fructose-6-phosphate amidotransferase, a key regulator in type 2 diabetes. FEBS Lett 583:163–167PubMedCrossRefGoogle Scholar
  33. Ng DPK, Walker WH, Chia KS, Choo S, Warram JH, Krolewski AS (2004) Scrutiny of the glutamine-fructose-6-phosphate transaminase 1 (GFPT1) locus reveals conserved haplotype block structure not associated with diabetic nephropathy. Diabetes 53:865–869PubMedCrossRefGoogle Scholar
  34. Niimi M, Ogawara T, Yamashita T, Yamamoto Y, Ueyama A, Kambe T, Okamoto T, Ban T, Tamanoi H, Ozaki K, Fujiwara T, Fukui H, Takahashi EI, Kyushiki H, Tanigami A (2001) Identification of GFAT1-L, a novel splice variant of human glutamine:fructose-6-phosphate amidotransferase (GFAT1) that is expressed abundantly in skeletal muscle. J Hum Genet 46:566–571PubMedCrossRefGoogle Scholar
  35. Oki T, Yamazaki K, Kuromitsu J, Okada M, Tanaka I (1999) cDNA cloning and mapping of a novel subtype of glutamine:fructose-6-phosphate amidotransferase (GFAT2) in human and mouse. Genomics 57:227–234PubMedCrossRefGoogle Scholar
  36. Pantaleon M, Scott J, Kaye PL (2008) Nutrient sensing by the early mouse embryo: hexosamine biosynthesis and glucose signaling during preimplantation development. Biol Reprod 78:595–600PubMedCrossRefGoogle Scholar
  37. Paterson AJ, Kudlow JE (1995) Regulation of glutamine:fructose-6-phosphate amidotransferase gene transcription by epidermal growth factor and glucose. Endocrinology 136:2809–2816PubMedGoogle Scholar
  38. Patti M (1999) Nutrient modulation of cellular insulin action. Ann NY Acd Sci 892:187–203CrossRefGoogle Scholar
  39. Prasad P, Tiwari AK, Kumar KM, Ammini AC, Gupta A, Gupta R, Thelma BK (2010) Association analysis of ADPRT1, AKR1B1, RAGE, GFPT2 and PAI-1 gene polymorphisms with chronic renal insufficiency among Asian Indians with type-2 diabetes. BMC Med Genet 11:52PubMedCentralPubMedCrossRefGoogle Scholar
  40. Qian Y, Ahmad M, Chen S, Gillespie P, Le N, Mennona F, Mischke S, So SS, Wang H, Burghardt C, Tannu S, Conde-Knape K, Kochan J (2011) Discovery of 1-arylcarbonyl-6,7-dimethoxyisoquinoline derivatives as glutamine fructose-6-phosphate amidotransferase (GFAT) inhibitors. Bioorg Med Chem Lett 21:6264–6269PubMedCrossRefGoogle Scholar
  41. Raman P, Krukovets I, Marinic T, Bornstein P, Stenina OI (2007) Glycosylation mediates up-regulation of a potent antiangiogenic and proatherogenic protein, thrombospondin-1, by glucose in vascular smooth muscle cells. J Biol Chem 282:5704–5714PubMedCrossRefGoogle Scholar
  42. Roseman S, Moses FE, Ludowieg A, Dorfman A (1953) The biosynthesis of hyaluronic acid by group A Streptococcus. I. Utilization of 1-C14-glucose. J Biol Chem 203:213–225PubMedGoogle Scholar
  43. Rossetti L, Hawkins M, Chen W, Gindi J, Barzilai N (1995) In vivo glucosamine infusion induces insulin resistance in normoglycemic but not in hyperglycemic conscious rats. J Clin Invest 96:132–140PubMedCentralPubMedCrossRefGoogle Scholar
  44. Sage AT, Walter LA, Shi Y, Khan MI, Kaneto H, Capretta A, Werstuck GH (2010) Hexosamine biosynthesis pathway flux promotes endoplasmic reticulum stress, lipid accumulation, and inflammatory gene expression in hepatic cells. Am J Physiol Endocrinol Metab 298:E499–E511PubMedCrossRefGoogle Scholar
  45. Sayeski PP, Paterson AJ, Kudlow JE (1994) The murine glutamine:fructose-6-phosphate amidotransferase-encoding cDNA sequence. Gene 140:289–290PubMedCrossRefGoogle Scholar
  46. Sayeski PP, Wang D, Su K, Han IO, Kudlow JE (1997) Cloning and partial characterization of the mouse glutamine:fructose-6-phosphate amidotransferase (GFAT) gene promoter. Nucleic Acids Res 25:1458–1466PubMedCentralPubMedCrossRefGoogle Scholar
  47. Senderek J, Müller JS, Dusl M, Strom TM, Guergueltcheva V, Diepolder I, Laval SH, Maxwell S, Cossins J, Krause S, Muelas N, Vilchez JJ, Colomer J, Mallebrera CJ, Nascimento A, Nafissi S, Kariminejad A, Nilipour Y, Bozorgmehr B, Najmabadi H, Rodolico C, Sieb JP, Steinlein OK, Schlotter B, Schoser B, Kirschner J, Herrmann R, Voit T, Oldfors A, Lindbergh C, Urtizberea A, von der Hagen M, Hübner A, Palace J, Bushby K, Straub V, Beeson D, Abicht A, Lochmüller H (2011) Hexosamine biosynthetic pathway mutations cause neuromuscular transmission defect. Am J Hum Genet 88:162–172PubMedCentralPubMedCrossRefGoogle Scholar
  48. Srinivasan V, Sandhya N, Sampathkumar R, Farooq S, Mohan V, Balasubramanyam M (2007) Glutamine fructose-6-phosphate amidotransferase (GFAT) gene expression and activity in patients with type 2 diabetes: inter-relationships with hyperglycaemia and oxidative stress. Clin Biochem 40:952–927PubMedCrossRefGoogle Scholar
  49. Tang J, Neidigh JL, Cooksey RC, McClain DA (2000) Transgenic mice with increased hexosamine flux specifically targeted to β-cells exhibit hyperinsulinemia and peripheral insulin resistance. Diabetes 49:1492–1499PubMedCrossRefGoogle Scholar
  50. Teplyakov A, Obmolova G, Badet-Denisot MA, Badet B, Polikarpov I (1998) Involvement of the C terminus in intramolecular nitrogen channeling in glucosamine 6-phosphate synthase: evidence from a 1.6 Å crystal structure of the isomerase domain. Structure 6:1047–1055PubMedCrossRefGoogle Scholar
  51. Teplyakov A, Obmolova G, Badet B, Badet-Denisot MA (2001) Channeling of ammonia in glucosamine-6-phosphate synthase. J Mol Biol 313:1093–1102PubMedCrossRefGoogle Scholar
  52. Veerababu G, Tang J, Hoffman RT, Daniels MC, Hebert LF Jr, Crook ED, Cooksey RC, McClain DA (2000) Overexpression of glutamine:fructose-6-phosphate amidotransferase in the liver of transgenic mice results in enhanced glycogen storage, hyperlipidemia, obesity, and impaired glucose tolerance. Diabetes 49:2070–2078PubMedCrossRefGoogle Scholar
  53. Walker JE, Gay NJ, Saraste M, Eberle AN (1984) DNA sequence around the Escherichia coli unc operon. Completion of the sequence of a 17 kilobase segment containing asnA, oriC, unc, glmS and phoS. Biochem J 224:799–815PubMedGoogle Scholar
  54. Watzele G, Tanner W (1989) Cloning of the glutamine:fructose-6-phosphate amidotransferase gene from yeast. Pheromonal regulation of its transcription. J Biol Chem 264:8753–8758PubMedGoogle Scholar
  55. Weigert C, Friess U, Brodbeck K, Häring HU, Schleicher ED (2003) Glutamine:fructose-6-phosphate aminotransferase enzyme activity is necessary for the induction of TGF-β1 and fibronectin expression in mesangial cells. Diabetologia 46:852–855PubMedCrossRefGoogle Scholar
  56. Weigert C, Thamer C, Brodbeck K, Guirguis A, Machicao F, Machann J, Schick F, Stumvoll M, Fritsche A, Häring HU, Schleicher ED (2005) The – 913 G/A glutamine:fructose-6-phosphate aminotransferase gene polymorphism is associated with measures of obesity and intramyocellular lipid content in nondiabetic subjects. J Clin Endocrinol Metab 90:1639–1643PubMedCrossRefGoogle Scholar
  57. Yamazaki K, Mizui Y, Oki T, Okada M, Tanaka I (2000) Cloning and characterization of mouse glutamine:fructose-6-phosphate amidotransferase 2 gene promoter. Gene 261:329–336PubMedCrossRefGoogle Scholar
  58. Yki-Järvinen H, Daniels MC, Virkamaki A, Makimattila S, DeFronzo RA, McClain D (1996) Increased glutamine:fructose-6-phosphate amidotransferase activity in skeletal muscle of patients with NIDDM. Diabetes 45:302–307PubMedCrossRefGoogle Scholar
  59. Zhang H, Jia Y, Cooper JJ, Hale T, Zhang Z, Elbein SC (2004) Common variants in glutamine:fructose-6-phosphate amidotransferase 2 (GFPT2) gene are associated with type 2 diabetes, diabetic nephropathy, and increased GFPT2 mRNA levels. J Clin Endocrinol Metab 89:748–755PubMedCrossRefGoogle Scholar
  60. Zhou J, Khai Huynh Q, Hoffman RT, Crook ED, Daniels MC, Gulve EA, McClain DA (1998) Regulation of glutamine: fructose-6-phosphate amidotransferase by cAMP-dependent protein kinase. Diabetes 47:1836–1840PubMedCrossRefGoogle Scholar
  61. Zitzler J, Link D, Schäfer R, Leibetrau W, Kazinski M, Bonin-Debs A, Behl C, Buckel P, Brinkmann U (2004) High-throughput functional genomics identifies genes that ameliorate toxicity due to oxidative stress in neuronal HT-22 cells. GFPT2 protects cells against peroxide. Mol Cell Proteomics 3:834–840PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Tsukuba Research LaboratoriesEisai Co., LtdTsukubaJapan

Personalised recommendations