Mannosyl (Alpha-1,6-)-Glycoprotein Beta-1,6-N-Acetyl-Glucosaminyltransferase (MGAT5)

  • James W. Dennis
  • Naoyuki Taniguchi
  • Michael Pierce
Reference work entry


N-acetylglucosamine (GlcNAc) branching on trimannosyl the core of N-linked glycans initiate “antennae” or that regulate glycoproteins involved in critical cellular functions. The family of enzymes that transfers GlcNAc to the trimannosyl N-linked core was originally designated by Schachter and co-workers using Roman numerals (Brockhausen et al. 1988a, b) (Fig. 21.1).


Sialic Acid Acceptor Substrate Paramagnetic Relaxation Enhancement Saturation Transfer Difference Glycan Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abbott KL, Aoki K, Lim JM, Porterfield M, Johnson R, O’Regan RM, Wells L, Tiemeyer M, Pierce M (2008a) Targeted glycoproteomic identification of biomarkers for human breast carcinoma. J Proteome Res 7:1470–1480PubMedCrossRefGoogle Scholar
  2. Abbott KL, Nairn AV, Hall EM, Horton MB, McDonald JF, Moremen KW, Dinulescu DM, Pierce M (2008b) Focused glycomic analysis of the N-linked glycan biosynthetic pathway in ovarian cancer. Proteomics 8:3210–3220PubMedCrossRefGoogle Scholar
  3. Alvarez-Manilla G, Troupe K, Fleming M, Martinez-Uribe E, Pierce M (2009) Comparison of the substrate specificities and catalytic properties of the sister N-acetylglucosaminyltransferases, GnT-V and GnT-Vb (IX). Glycobiology Epub. PMID: 19846580Google Scholar
  4. Brockhausen I, Carver JP, Schachter H (1988a) Control of glycoprotein synthesis. The use of oligosaccharide substrates and HPLC to study the sequential pathway for N-acetylglucosaminyltransferases I, II, III, IV, V, and VI in the biosynthesis of highly branched N-glycans by hen oviduct membranes. Biochem Cell Biol = Biochimie et biologie cellulaire 66:1134–1151CrossRefGoogle Scholar
  5. Brockhausen I, Narasimhan S, Schachter H (1988b) The biosynthesis of highly branched N-glycans: studies on the sequential pathway and functional role of N-acetylglucosaminyltransferases I, II, III, IV, V and VI. Biochimie 70:1521–1533PubMedCrossRefGoogle Scholar
  6. Brynedal B, Wojcik J, Esposito F, Debailleul V, Yaouanq J, Martinelli-Boneschi F, Edan G, Comi G, Hillert J, Abderrahim H (2010) MGAT5 alters the severity of multiple sclerosis. J Neuroimmunol 220:120–124PubMedCrossRefGoogle Scholar
  7. Buckhaults P, Chen L, Fregien N, Pierce M (1997) Transcriptional regulation of N-acetylglucosaminyltransferase V by the src oncogene. J Biol Chem 272:19575–19581PubMedCrossRefGoogle Scholar
  8. Chen L, Zhang N, Adler B, Browne J, Fregien N, Pierce M (1996) Preparation of antisera to recombinant, soluble N-acetylglucosaminyltransferase V and its visualization in situ. Glycoconj J. PMID: 8748159Google Scholar
  9. Chen L, Zhang W, Fregien N, Pierce M (1998) The her-2/neu oncogene stimulates the transcription of N-acetylglucosaminyltransferase V and expression of its cell surface oligosaccharide products. Oncogene 17:2087–2093PubMedCrossRefGoogle Scholar
  10. Cheung P, Dennis JW (2007) Mgat5 and Pten interact to regulate cell growth and polarity. Glycobiology 17:767–773PubMedCrossRefGoogle Scholar
  11. Cummings RD, Trowbridge IS, Kornfeld S (1982) A mouse lymphoma cell line resistant to the leukoagglutinating lectin from phaseolus vulgaris is deficient in UDP GLcNAc: a-D-mannoside b1,6 N-acetylglucosaminyltransferase. J Biol Chem 257:13421–13427PubMedGoogle Scholar
  12. Demetriou M, Granovsky M, Quaggin S, Dennis JW (2001) Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 409:733–739PubMedCrossRefGoogle Scholar
  13. Demetriou M, Nabi IR, Coppolino M, Dedhar S, Dennis JW (1995) Reduced contact-inhibition and substratum adhesion in epithelial cells expressing GlcNAc-transferase V. J Cell Biol 130:383–392PubMedCrossRefGoogle Scholar
  14. Dennis JW, Laferte S, Waghorne C, Breitman ML, Kerbel RS (1987) Beta 1-6 branching of Asn-linked oligosaccharides is directly associated with metastasis. Science 236:582–585PubMedCrossRefGoogle Scholar
  15. Do KY, Fegien N, Pierce M, Cummings R (1994) Activity of N-acetylglucosaminyl-transferase V toward glycoprotein acceptors: glycosylation by GlcNAc-T V is determined by its accessibility to oligosaccharides. J Biol Chem 269:23456–23464PubMedGoogle Scholar
  16. Dosaka-Akita H, Miyoshi E, Suzuki O, Itoh T, Katoh H, Taniguchi N (2004) Expression of N-acetylglucosaminyltransferase v is associated with prognosis and histology in non-small cell lung cancers. Clin Cancer Res: An Off J Am Assoc Cancer Res 10:1773–1779CrossRefGoogle Scholar
  17. Fernandes B, Sagman U, Auger M, Demetrio M, Dennis JW (1991) Beta 1-6 branched oligosaccharides as a marker of tumor progression in human breast and colon neoplasia. Cancer Res 51:718–723PubMedGoogle Scholar
  18. Granovsky M, Fata J, Pawling J, Muller WJ, Khokha R, Dennis JW (2000) Suppression of tumor growth and metastasis in Mgat5-deficient mice. Nat Med 6:306–312PubMedCrossRefGoogle Scholar
  19. Grigorian A, Lee SU, Tian W, Chen IJ, Gao G, Mendelsohn R, Dennis JW, Demetriou M (2007) Control of T cell-mediated autoimmunity by metabolite flux to N-glycan biosynthesis. J Biol Chem 282:20027–20035PubMedCrossRefGoogle Scholar
  20. Gu J, Nishikawa A, Tsuruoka N, Ohno M, Yamaguchi N, Kangawa K, Taniguchi N (1993) Purification and characterization of UDP-N-acetylglucosamine: alpha-6-D-mannoside beta 1-6 N-acetylglucosaminyltransferase (N-acetylglucosaminyltransferase V) from a human lung cancer cell line. J Biochem 113:614–619PubMedGoogle Scholar
  21. Guo H, Nairn A, dela Rosa M, Nagy T, Zhao S, Moremen K, Pierce M (2012) Transcriptional regulation of the protocadherin beta cluster during Her-2 protein-induced mammary tumorigenesis results from altered N-glycan branching. J Biol Chem 287:24941–24954PubMedCrossRefGoogle Scholar
  22. Guo H-B, Lee I, Bryan B, Pierce M (2005) Deletion of mouse embryo fibroblast N-acetylglucosaminyltransferase V stimulates alpha5 beta1 integrin expression mediated by the protein kinase C signaling pathway. J Biol Chem 280:8332–8342PubMedCrossRefGoogle Scholar
  23. Guo HB, Johnson H, Randolph M, Pierce M (2009a) Knockdown of GnT-V inhibits ligand-induced down-regulation of the epidermal growth factor receptor. Glycobiology 19:547–559PubMedCrossRefGoogle Scholar
  24. Guo HB, Johnson H, Randolph M, Nagy T, Blalock R, Pierce JM (2010) Specific posttranslational modification regulates early events in mammary carcinoma formation. Proc Natl Acad Sci USA 107:21116–21121PubMedCrossRefPubMedCentralGoogle Scholar
  25. Guo HB, Johnson H, Randolph M, Pierce M (2009) Regulation of homotypic cell-cell adhesion by branched N-glycosylation of N-cadherin extracellular EC2-3 domains. J Biol Chem Epub2009. PMID: 19846557Google Scholar
  26. Guo HB, Liu F, Zhao JH, Chen HL (2000) Down-regulation of N-acetylglucosaminyltransferase V by tumorigenesis- or metastasis-suppressor gene and its relation to metastatic potential of human heptocarcinoma cells. J Cell Biochem 79:370–385PubMedCrossRefGoogle Scholar
  27. Guo P, Zhang Y, Zhao JH, Wang LY, Guo HB, Zhang XY, Chen HL (2003) Regulation on the expression and N-glycosylation of integrins by N-acetylglucosaminyltransferase V. Biochem Biophys Res Commun 310:619–626PubMedCrossRefGoogle Scholar
  28. Hanashima S, Manabe S, Inamori K, Taniguchi N, Ito Y (2004) Synthesis of a bisubstrate-type inhibitor of N-acetylglucosaminyltransferases. Angew Chem Int Ed Engl 43:5674–5677PubMedCrossRefGoogle Scholar
  29. Handerson T, Camp R, Harigopal M, Rimm D, Pawelek J (2005) Beta1,6-Branched oligosaccharides are increased in lymph node metastases and predict poor outcome in breast carcinoma. Clin Cancer Res: An Off J Am Assoc Cancer Res 11:2969–2973CrossRefGoogle Scholar
  30. Handerson T, Pawelek JM (2003) Beta1,6-Branched oligosaccharides and coarse vesicles: a common, pervasive phenotype in melanoma and other human cancers. Cancer Res 63:5363–5369PubMedGoogle Scholar
  31. Ihara S, Miyoshi E, Ko JH, Murata K, Nakahara S, Honke K, Dickson RB, Lin CY, Taniguchi N (2002) Prometastatic effect of N-acetylglucosaminyltransferase V is due to modification and stabilization of active matriptase by adding beta 1-6 GlcNAc branching. J Biol Chem 277:16960–16967PubMedCrossRefGoogle Scholar
  32. Ihara S, Miyoshi E, Nakahara S, Sakiyama H, Ihara H, Akinaga A, Honke K, Dickson RB, Lin CY, Taniguchi N (2004) Addition of beta1-6 GlcNAc branching to the oligosaccharide attached to Asn 772 in the serine protease domain of matriptase plays a pivotal role in its stability and resistance against trypsin. Glycobiology 14:139–146PubMedCrossRefGoogle Scholar
  33. Inamori K, Gu J, Ohira M, Kawasaki A, Nakamura Y, Nakagawa T, Kondo A, Miyoshi E, Nakagawara A, Taniguchi N (2006) High expression of N-acetylglucosaminyltransferase V in favorable neuroblastomas: involvement of its effect on apoptosis. FEBS Lett 580:627–632PubMedCrossRefGoogle Scholar
  34. Isaji T, Gu J, Nishiuchi R, Zhao Y, Takahashi M, Miyoshi E, Honke K, Sekiguchi K, Taniguchi N (2004) Introduction of bisecting GlcNAc into integrin alpha5beta1 reduces ligand binding and down-regulates cell adhesion and cell migration. J Biol Chem 279:19747–19754PubMedCrossRefGoogle Scholar
  35. Isaji T, Sato Y, Zhao Y, Miyoshi E, Wada Y, Taniguchi N, Gu J (2006) N-glycosylation of the beta-propeller domain of the integrin alpha5 subunit is essential for alpha5beta1 heterodimerization, expression on the cell surface, and its biological function. J Biol Chem 281:33258–33267PubMedCrossRefGoogle Scholar
  36. Kamar M, Alvarez-Manilla G, Abney T, Azadi P, Kumar Kolli VS, Orlando R, Pierce M (2004) Analysis of the site-specific N-glycosylation of beta1,6 N-acetylglucosaminyltransferase V. Glycobiology 14:583–592PubMedCrossRefGoogle Scholar
  37. Kang R, Saito H, Ihara Y, Miyoshi E, Koyama N, Sheng Y, Taniguchi N (1996) Transcriptional regulation of the N-acetylglucosaminyltransferase V gene in human bile duct carcinoma cells (HuCC-T1) is mediated by Ets-1. J Biol Chem 271:26706–26712PubMedCrossRefGoogle Scholar
  38. Kanie O, Crawley SC, Palcic MM, Hindsgaul O (1993) Acceptor-substrate recognition by N-acetylglucosaminyltransferase-V: critical role of the 4″-hydroxyl group in beta-D-GlcpNAc-(1–>2)-alpha-D-Manp(1–>6)-beta-D-Glcp-OR. Carbohydr Res 243:139–164PubMedCrossRefGoogle Scholar
  39. Kanie O, Crawley SC, Palcic MM, Hindsgaul O (1994) Key involvement of all three GlcNAc hydroxyl groups in the recognition of beta-D-GlcpNAc-(1–>2)-alpha-D-Manp-(1–>6)-beta-D-Glcp-OR by N-acetylglucosaminyltransferase-V. Bioorg Med Chem 2:1231–1241PubMedCrossRefGoogle Scholar
  40. Kariya Y, Gu J (2011) N-glycosylation of ss4 integrin controls the adhesion and motility of keratinocytes. PLoS One 6:e27084. PMID:22073258Google Scholar
  41. Ko J, Miyoshi E, Noda K, Ekuni A, Kang R, Ikeda Y, Taniguchi N (1999) Regulation of the GnT-V promoter by transcription factor Ets-1 in various cancer cell lines. J Biol Chem 274:22941–22948PubMedCrossRefGoogle Scholar
  42. Korczak B, Le T, Elowe S, Datti A, Dennis JW (2000) Minimal catalytic domain of N-acetylglucosaminyltransferase V. Glycobiology 10:595–599PubMedCrossRefGoogle Scholar
  43. Lajoie P, Partridge EA, Guay G, Goetz JG, Pawling J, Lagana A, Joshi B, Dennis JW, Nabi IR (2007) Plasma membrane domain organization regulates EGFR signaling in tumor cells. J Cell Biol 179:341–356PubMedCrossRefGoogle Scholar
  44. Langer MD, Guo H, Shashikanth N, Pierce JM, Leckband DE (2012) N-glycosylation alters cadherin-mediated intercellular binding kinetics. J Cell Sci 125:2478–2485PubMedCrossRefGoogle Scholar
  45. Lau KS, Partridge EA, Grigorian A, Silvescu CI, Reinhold VN, Demetriou M, Dennis JW (2007) Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 129:123–134PubMedCrossRefGoogle Scholar
  46. Lu PP, Hindsgaul O, Compston CA, Palcic MM (1996) New synthetic trisaccharide inhibitors for N-acetylglucosaminyltransferase-V. Bioorg Med Chem 4:2011–2022PubMedCrossRefGoogle Scholar
  47. Lu PP, Hindsgaul O, Li H, Palcic MM (1997) Synthesis and evaluation of eight aminodeoxy trisaccharide inhibitors for N-acetylglucosaminyltransferase-V. Carbohydr Res 303:283–291PubMedCrossRefGoogle Scholar
  48. Macnaughtan MA, Kamar M, Alvarez-Manilla G, Venot A, Glushka J, Pierce JM, Prestegard JH (2007) NMR structural characterization of substrates bound to N-acetylglucosaminyltransferase V. J Mol Biol 366:1266–1281PubMedCrossRefPubMedCentralGoogle Scholar
  49. Mkhikian H, Grigorian A, Li CF, Chen HL, Newton B, Zhou RW, Beeton C, Torossian S, Tatarian GG, Lee SU, Lau K, Walker E, Siminovitch KA, Chandy KG, Yu Z, Dennis JW, Demetriou M (2011) Genetics and the environment converge to dysregulate N-glycosylation in multiple sclerosis. Nat Commun 2:334PubMedCrossRefPubMedCentralGoogle Scholar
  50. Morgan R, Gao G, Pawling J, Dennis JW, Demetriou M, Li B (2004) N-acetylglucosaminyltransferase V (Mgat5)-mediated N-glycosylation negatively regulates Th1 cytokine production by T cells. J Immunol 173:7200–7208PubMedGoogle Scholar
  51. Murata K, Miyoshi E, Kameyama M, Ishikawa O, Kabuto T, Sasaki Y, Hiratsuka M, Ohigashi H, Ishiguro S, Ito S, Honda H, Takemura F, Taniguchi N, Imaoka S (2000) Expression of N-acetylglucosaminyltransferase V in colorectal cancer correlates with metastasis and poor prognosis. Clin Cancer Res 6:1772–1777PubMedGoogle Scholar
  52. Nishikawa A, Gu J, Fujii S, Taniguchi N (1990) Determination of N-acetylglucosaminyltransferases III, IV and V in normal and hepatoma tissues of rats. Biochim Biophys Acta 1035:313–318PubMedCrossRefGoogle Scholar
  53. Palcic MM, Heerze LD, Pierce M, Hindsgaul O (1988) The use of hydrophobic synthetic glycosides as acceptors in glycosyltranferase assays. Glyconjugate J 5:49–63CrossRefGoogle Scholar
  54. Palcic MM, Ripka J, Kaur KJ, Shoreibah M, Hindsgaul O, Pierce M (1990) Regulation of N-acetylglucosaminyltransferase V activity. Kinetic comparisons of parental, Rous sarcoma virus-transformed BHK, and L-phytohemagglutinin-resistant BHK cells using synthetic substrates and an inhibitory substrate analog. J Biol Chem 265:6759–6769PubMedGoogle Scholar
  55. Partridge EA, Le Roy C, Di Guglielmo GM, Pawling J, Cheung P, Granovsky M, Nabi IR, Wrana JL, Dennis JW (2004) Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science 306:120–124PubMedCrossRefGoogle Scholar
  56. Pierce M, Arango J (1986) Rous sarcoma virus-transformed baby hamster kidney cells express higher levels of asparagine-linked tri- and tetraantennary glycopeptides containing [GlcNAc-b(1,6)Man -a(1,6)Man] and poly-N-acetyllactosamine sequences than baby hamster kidney cells. J Biol Chem 261:10772–10777PubMedGoogle Scholar
  57. Pierce M, Arango J, Tahir SH, Hindsgaul O (1987) Activity of UDP-GlcNAc:alpha-mannoside beta(1,6)N- acetylglucosaminyltransferase (GnT V) in cultured cells using a synthetic trisaccharide acceptor. Biochem Biophys Res Commun 146:679–684PubMedCrossRefGoogle Scholar
  58. Pinho SS, Figueiredo J, Cabral J, Carvalho S, Dourado J, Magalhaes A, Gartner F, Mendonca AM, Isaji T, Gu J, Carneiro F, Seruca R, Taniguchi N, Reis CA (2012) E-cadherin and adherens-junctions stability in gastric carcinoma: functional implications of glycosyltransferases involving N-glycan branching biosynthesis, N-acetylglucosaminyltransferases III and V. Biochim Biophys Acta. PMID: 23671930Google Scholar
  59. Saito H, Nishikawa A, Gu J, Ihara Y, Soejima H, Wada Y, Sekiya C, Niikawa N, Taniguchi N (1994) CDNA cloning and chromosomal mapping of human N-acetylglucosaminyltransferase V+. Biochem Biophys Res Commun 198:318–327PubMedCrossRefGoogle Scholar
  60. Saito T, Miyoshi E, Sasai K, Nakano N, Eguchi H, Honke K, Taniguchi N (2002) A secreted type of beta 1,6-N-acetylglucosaminyltransferase V (GnT-V) induces tumor angiogenesis without mediation of glycosylation: a novel function of GnT-V distinct from the original glycosyltransferase activity. J Biol Chem 277:17002–17008PubMedCrossRefGoogle Scholar
  61. Sano M, Korekane H, Ohtsubo K, Yamaguchi Y, Kato M, Shibukawa Y, Tajiri M, Adachi H, Wada Y, Asahi M, Taniguchi N (2012) N-glycans of SREC-I (scavenger receptor expressed by endothelial cells): essential role for ligand binding, trafficking and stability. Glycobiology 22:714–724PubMedCrossRefGoogle Scholar
  62. Sasai K, Ikeda Y, Eguchi H, Tsuda T, Honke K, Taniguchi N (2002) The action of N-acetylglucosaminyltransferase-V is prevented by the bisecting GlcNAc residue at the catalytic step. FEBS Lett 522:151–155PubMedCrossRefGoogle Scholar
  63. Sato Y, Isaji T, Tajiri M, Yoshida-Yamamoto S, Yoshinaka T, Somehara T, Fukuda T, Wada Y, Gu J (2009) An N-glycosylation site on the beta-propeller domain of the integrin alpha5 subunit plays key roles in both its function and site-specific modification by beta1,4-N-acetylglucosaminyltransferase III. J Biol Chem 284:11873–11881PubMedCrossRefGoogle Scholar
  64. Sato Y, Takahashi M, Shibukawa Y, Jain SK, Hamaoka R, Miyagawa J, Yaginuma Y, Honke K, Ishikawa M, Taniguchi N (2001) Overexpression of N-acetylglucosaminyltransferase III enhances the epidermal growth factor-induced phosphorylation of ERK in HeLaS3 cells by up-regulation of the internalization rate of the receptors. J Biol Chem 276:11956–11962PubMedCrossRefGoogle Scholar
  65. Seelentag WKF, W-P LI, Schmitz S-FH, Metzger U, Aeberhard P, Heitz PU, Roth J (1998) Prognostic value of beta (1,6)branched oligosaccharides in human colorectal carcinoma. Cancer Res 58:5559–5564PubMedGoogle Scholar
  66. Shoreibah M, Hindsgaul O, Pierce M (1992) Purification and characterization of N-acetylglucosaminyltransferase V from rat kidney. J Biol Chem 267:2920–2927PubMedGoogle Scholar
  67. Shoreibah M, Perng GS, Adler B, Weinstein J, Basu R, Cupples R, Wen D, Browne JK, Buckhaults P, Fregien N et al. (1993) Isolation, characterization, and expression of a cDNA encoding N-acetylglucosaminyltransferase V. J Biol Chem 268:15381–15385PubMedGoogle Scholar
  68. Srivastava OP, Hindsgaul O, Shoreibah M, Pierce M (1988) Recognition of oligosaccharide substrates by N-acetylglucosaminyltransferase-V. Carbohy Res 179:137–161CrossRefGoogle Scholar
  69. Stanley P, Schachter H, Taniguchi N (2009) N-glycans. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor, New YorkGoogle Scholar
  70. Takahashi M, Tsuda T, Ikeda Y, Honke K, Taniguchi N (2004) Role of N-glycans in growth factor signaling. Glycoconj J 20:207–212PubMedCrossRefGoogle Scholar
  71. Taniguchi N, Korekane H (2011) Branched N-glycans and their implications for cell adhesion, signaling and clinical applications for cancer biomarkers and in therapeutics. BMB Rep 44:772–781PubMedCrossRefGoogle Scholar
  72. Terao M, Ishikawa A, Nakahara S, Kimura A, Kato A, Moriwaki K, Kamada Y, Murota H, Taniguchi N, Katayama I, Miyoshi E (2011) Enhanced epithelial-mesenchymal transition-like phenotype in N-acetylglucosaminyltransferase V transgenic mouse skin promotes wound healing. J Biol Chem 286:28303–28311PubMedCrossRefGoogle Scholar
  73. Tian H, Miyoshi E, Kawaguchi N, Shaker M, Ito Y, Taniguchi N, Tsujimoto M, Matsuura N (2008) The implication of N-acetylglucosaminyltransferase V expression in gastric cancer. Pathobiology: J Immunopathol Mol Cell Biol 75:288–294CrossRefGoogle Scholar
  74. Yamashita K, Ohkura T, Tachibana Y, Takasaki S, Kobata A (1984) Comparative study of the oligosaccharides released from baby hamster kidney cells and their polyoma transformant by hydrazinolysis. J Biol Chem 259:10834–10840PubMedGoogle Scholar
  75. Yamashita K, Tachibana Y, Ohkura T, Kobata A (1985) Enzymatic basis for the structural changes of asparagine-linked sugar chains of membrane glycoproteins of baby hamster kidney cells induced by polyoma transformation. J Biol Chem 260:3963–3969PubMedGoogle Scholar
  76. Yoshimura M, Nishikawa A, Ihara Y, Taniguchi S, Taniguchi N (1995) Suppression of lung metastasis of B16 mouse melanoma by N-acetylglucosaminyltransferase III gene transfection. Proc Natl Acad Sci USA 92:8754–8758PubMedCrossRefPubMedCentralGoogle Scholar
  77. Zhao YY, Takahashi M, Gu JG, Miyoshi E, Matsumoto A, Kitazume S, Taniguchi N (2008) Functional roles of N-glycans in cell signaling and cell adhesion in cancer. Cancer Sci 99:1304–1310PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  • James W. Dennis
    • 1
  • Naoyuki Taniguchi
    • 2
  • Michael Pierce
    • 3
  1. 1.Joseph and Wolf Lebovic Health ComplexLunenfeld-Tanenbaum Research Institute, Mount Sinai HospitalTorontoCanada
  2. 2.Disease Glycomics Team, Systems Glycobiology Research GroupRIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, RIKENWakoJapan
  3. 3.Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research CenterThe University of GeorgiaAthensUSA

Personalised recommendations