Skip to main content

Glucosamine-6 Phosphate N-Acetyltransferase (GNPNAT1/GNA1)

  • Reference work entry
  • First Online:

Abstract

UDP-GlcNAc is an essential high-energy donor for oligosaccharide biosynthesis in Bacteria, Archaea, and Eukaryota, suggesting the hexosamine biosynthesis pathway has very early origins. Fructose-6P, glutamine, and acetyl-CoA are required substrates, linking the hexosamine biosynthesis pathway to key metabolites of glycolysis, tricarboxylic acid cycle, lipogenesis, and nitrogen cycle. In vertebrates, UDP-GlcNAc is also the precursor to UDP-GalNAc and CMP-NeuNAc synthesis. These nucleotide sugars are utilized as high-energy donor substrates in most of the major pathways of protein glycosylation and glycolipid biosynthesis. UDP-GlcNAc is required in the biosynthesis of the N-glycosylation donor oligosaccharide-pp-dolichol as well as O-GlcNAcylation of cytosolic proteins. Concentrations of UDP-GlcNAc are rate limiting for O-GlcNAcylation (Kreppel and Hart 1999) and also in the Golgi for N-glycan remodeling on glycoproteins produced in the secretory pathway (Sasai et al. 2002).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alvarez FJ, Konopka JB (2007) Identification of an N-acetylglucosamine transporter that mediates hyphal induction in Candida albicans. Mol Biol Cell 18:965–975

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boehmelt G, Fialka I, Brothers G, McGinley MD, Patterson SD, Mo R, Hui CC, Chung S, Huber LA, Mak TW et al (2000a) Cloning and characterization of the murine glucosamine-6-phosphate acetyltransferase EMeg32. J Biol Chem 275:12821–12832

    Article  CAS  PubMed  Google Scholar 

  • Boehmelt G, Wakeham A, Elia A, Sasaki T, Plyte S, Potter J, Yang Y, Tsang E, Ruland J, Iscove NN et al (2000b) Decreased UDP-GlcNAc levels abrogate proliferation control in EMeg32-deficient cells. EMBO J 19:5092–5104

    Article  CAS  PubMed  Google Scholar 

  • Breidenbach MA, Gallagher JE, King DS, Smart BP, Wu P, Bertozzi CR (2010) Targeted metabolic labeling of yeast N-glycans with unnatural sugars. Proc Natl Acad Sci USA 107:3988–3993

    Article  CAS  PubMed  Google Scholar 

  • Broschat KO, Gorka C, Page JD, Martin-Berger CL, Davies MS, Huang Hc HC, Gulve EA, Salsgiver WJ, Kasten TP (2002) Kinetic characterization of human glutamine-fructose-6-phosphate amidotransferase I: potent feedback inhibition by glucosamine 6-phosphate. J Biol Chem 277:14764–14770

    Article  CAS  PubMed  Google Scholar 

  • Bulik DA, Olczak M, Lucero HA, Osmond BC, Robbins PW, Specht CA (2003) Chitin synthesis in Saccharomyces cerevisiae in response to supplementation of growth medium with glucosamine and cell wall stress. Eukaryot Cell 2:886–900

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cai L, Sutter BM, Li B, Tu BP (2011) Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol Cell 42:426–437

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dennis JW, Nabi IR, Demetriou M (2009) Metabolism, cell surface organization, and disease. Cell 139:1229–1241

    Article  PubMed Central  PubMed  Google Scholar 

  • Grigorian A, Demetriou M (2010) Manipulating cell surface glycoproteins by targeting N-glycan-galectin interactions. Methods Enzymol 480:245–266

    Article  CAS  PubMed  Google Scholar 

  • Grigorian A, Lee S-U, Tian W, Chen I-J, Gao G, Mendelsohn R, Dennis JW, Demetriou M (2007) Control of T cell mediated autoimmunity by metabolite flux to N-glycan biosynthesis. J Biol Chem 282:20027–20035

    Article  CAS  PubMed  Google Scholar 

  • Hinderlich S, Berger M, Schwarzkopf M, Effertz K, Reutter W (2000) Molecular cloning and characterization of murine and human N-acetylglucosamine kinase. Eur J Biochem 267:3301–3308

    Article  CAS  PubMed  Google Scholar 

  • Johnston WL, Dennis JW (2011) The eggshell in the C. elegans oocyte-to-embryo transition. Genesis 50:333–349

    Article  PubMed  Google Scholar 

  • Johnston WL, Krizus A, Dennis JW (2006) The eggshell is required for meiotic fidelity, polar-body extrusion and polarization of the C. elegans embryo. BMC Biol 4:35

    Article  PubMed Central  PubMed  Google Scholar 

  • Johnston WL, Krizus A, Dennis JW (2010) Eggshell chitin and chitin-interacting proteins prevent polyspermy in C. elegans. Curr Biol 20:1932–1937

    Article  CAS  PubMed  Google Scholar 

  • Kreppel LK, Hart GW (1999) Regulation of a cytosolic and nuclear O-GlcNAc transferase. Role of the tetratricopeptide repeats. J Biol Chem 274:32015–32022

    Article  CAS  PubMed  Google Scholar 

  • Krick R, Bremer S, Welter E, Schlotterhose P, Muehe Y, Eskelinen EL, Thumm M (2010) Cdc48/p97 and Shp1/p47 regulate autophagosome biogenesis in concert with ubiquitin-like Atg8. J Cell Biol 190:965–973

    Article  CAS  PubMed  Google Scholar 

  • Lara-Lemus R, Calcagno ML (1998) Glucosamine-6-phosphate deaminase from beef kidney is an allosteric system of the V-type. Biochim Biophys Acta 1388:1–9

    Article  CAS  PubMed  Google Scholar 

  • Lau K, Partridge EA, Silvescu CI, Grigorian A, Pawling J, Reinhold VN, Demetriou M, Dennis JW (2007) Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 129:123–124

    Article  CAS  PubMed  Google Scholar 

  • Laxman S, Tu BP (2010) Systems approaches for the study of metabolic cycles in yeast. Curr Opin Genet Dev 20:599–604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee MH, Schedl T (2004) Translation repression by GLD-1 protects its mRNA targets from nonsense-mediated mRNA decay in C. elegans. Genes Dev 18:1047–1059

    Article  CAS  PubMed  Google Scholar 

  • Lin R, Allis CD, Elledge SJ (1996) PAT1, an evolutionarily conserved acetyltransferase homologue, is required for multiple steps in the cell cycle. Genes Cells 1:923–942

    Article  CAS  PubMed  Google Scholar 

  • Marino K, Guther ML, Wernimont AK, Qiu W, Hui R, Ferguson MA (2011) Characterization, localization, essentiality, and high-resolution crystal structure of glucosamine 6-phosphate N-acetyltransferase from Trypanosoma brucei. Eukaryot Cell 10:985–997

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mio T, Yamada-Okabe T, Arisawa M, Yamada-Okabe H (1999) Saccharomyces cerevisiae GNA1, an essential gene encoding a novel acetyltransferase involved in UDP-N-acetylglucosamine synthesis. J Biol Chem 274:424–429

    Article  CAS  PubMed  Google Scholar 

  • Mkhikian H, Grigorian A, Li CF, Chen HL, Newton B, Zhou RW, Beeton C, Torossian S, Tatarian GG, Lee SU et al (2011) Genetics and the environment converge to dysregulate N-glycosylation in multiple sclerosis. Nat Commun 2:334

    Article  PubMed Central  PubMed  Google Scholar 

  • Oikawa S, Akamatsu N (1985) Three forms of rat liver glucosamine 6-phosphate acetylase and the changes in their levels during development. Int J Biochem 17:73–80

    Article  CAS  PubMed  Google Scholar 

  • Oikawa S, Sato H, Akamatsu N (1986) Glucosamine 6-phosphate acetylase in rat ascites hepatomas. Int J Biochem 18:929–933

    Article  CAS  PubMed  Google Scholar 

  • Peneff C, Mengin-Lecreulx D, Bourne Y (2001) The crystal structures of Apo and complexed Saccharomyces cerevisiae GNA1 shed light on the catalytic mechanism of an amino-sugar N-acetyltransferase. J Biol Chem 276:16328–16334

    Article  CAS  PubMed  Google Scholar 

  • Porowski TS, Porowska H, Galasinski W (1990) Isolation, purification, and characterization of glucosamine-6-phosphate-N-acetylase from pig liver. Biochem Med Metab Biol 44:1–12

    Article  CAS  PubMed  Google Scholar 

  • Sacristan C, Reyes A, Roncero C (2012) Neck compartmentalization as the molecular basis for the different endocytic behaviour of Chs3 during budding or hyperpolarized growth in yeast cells. Mol Microbiol 83:1124–1135

    Article  CAS  PubMed  Google Scholar 

  • Sasai K, Ikeda Y, Fujii T, Tsuda T, Taniguchi N (2002) UDP-GlcNAc concentration is an important factor in the biosynthesis of beta1,6-branched oligosaccharides: regulation based on the kinetic properties of N-acetylglucosaminyltransferase V. Glycobiology 12:119–127

    Article  CAS  PubMed  Google Scholar 

  • Smith TL, Rutter J (2007) Regulation of glucose partitioning by PAS kinase and Ugp1 phosphorylation. Mol Cell 26:491–499

    Article  CAS  PubMed  Google Scholar 

  • Vessal M, Hassid WZ (1973) Partial purification and properties of d-glucosamine 6-phosphate N-acetyltransferase from phaseolus aureus. Plant Physiol 51:1055–1060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vetting MW, LP SC, Yu M, Hegde SS, Magnet S, Roderick SL, Blanchard JS (2005) Structure and functions of the GNAT superfamily of acetyltransferases. Arch Biochem Biophys 433:212–226

    Article  CAS  PubMed  Google Scholar 

  • Wang-Gillam A, Pastuszak I, Elbein AD (1998) A 17-amino acid insert changes UDP-N-acetylhexosamine pyrophosphorylase specificity from UDP-GalNAc to UDP-GlcNAc. J Biol Chem 273:27055–27057

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Liu X, Liang YH, Li LF, Su XD (2008) Acceptor substrate binding revealed by crystal structure of human glucosamine-6-phosphate N-acetyltransferase 1. FEBS Lett 582:2973–2978

    Article  CAS  PubMed  Google Scholar 

  • Wellen KE, Lu C, Mancuso A, Lemons JM, Ryczko M, Dennis JW, Rabinowitz JD, Coller HA, Thompson CB (2010) The hexosamine biosynthetic pathway couples growth factor-induced glutamine uptake to glucose metabolism. Genes Dev 24:2784–2799

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Paige JS, Jaffrey SR (2010) Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling. Nat Biotechnol 28:868–873

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James W. Dennis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this entry

Cite this entry

Dennis, J.W. (2014). Glucosamine-6 Phosphate N-Acetyltransferase (GNPNAT1/GNA1). In: Taniguchi, N., Honke, K., Fukuda, M., Narimatsu, H., Yamaguchi, Y., Angata, T. (eds) Handbook of Glycosyltransferases and Related Genes. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54240-7_148

Download citation

Publish with us

Policies and ethics