Advertisement

ST8 Alpha-N-Acetyl-Neuraminide Alpha-2,8-Sialyltransferase 3 (ST8SIA3)

  • Shuichi Tsuji
  • Shou Takashima
Reference work entry

Abstract

ST8Sia-III (E.C.2.4.99.8) transfers sialic acid from CMP-sialic acid (CMP-Sia) to the sialic acid residues of glycoconjugates through an α2,8-linkage.

Keywords

Sialic Acid Sialic Acid Residue Acceptor Substrate Morpholino Knockdown Membrane Protein Topology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Angata K, Suzuki M, McAuliffe J, Ding Y, Hindsgaul 0, Fukuda M (2000) Differential biosynthesis of polysialic acid on neural cell adhesion molecule (NCAM) and oligosaccharide acceptors by three distinct alpha2, 8-sialyltransferases, ST8SiaIV (PST), ST8SiaII (STX), and ST8Sia III. J Biol Chem 275:18594–18601PubMedCrossRefGoogle Scholar
  2. Bentrop J, Marx M, Schattschneider S, Rivera-Milla E, Bastmeyer M (2008) Molecular evolution and expression of zebrafish St8SiaIII, an alpha-2,8-sialyltransferase involved in myotome development. Dev Dyn 237:808–818PubMedCrossRefGoogle Scholar
  3. Chang LY, Mir AM, Thisse C, Guerardel Y, Delannoy P, Thisse B, Harduin-Lepers A (2009) Molecular cloning and characterization of the expression pattern of the zebrafish alpha2,8-sialyltransferases(ST8Sia) in the developing nervous system. Glycoconj J 26(3):263–275PubMedCrossRefGoogle Scholar
  4. Coutinho PM, Deleury E, Davies GJ, Henrissat B (2003) An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328:307–317PubMedCrossRefGoogle Scholar
  5. Harduin-Lepers A, Petit D, Mollicone R, Delannoy P, Petit JM, Oriol R (2008) Evolutionary history of the alpha2,8-sialyltransferase (ST8Sia) gene family: Tandem duplications in early deuterostomes explain most of the diversity found in the vertebrate ST8Sia genes. BMC Evol Biol 8:258PubMedCentralPubMedCrossRefGoogle Scholar
  6. Kojima N, Yoshida Y, Kurosawa N, Lee YC, Tsuji S (1995) Enzymatic activity of a developmentally regulated member of the sialyltransferase family (STX): evidence for a2,8-sialyltransferase activity toward N-linked oligosaccharides. FEBS Lett 360:1–4PubMedCrossRefGoogle Scholar
  7. Kojima N, Tachida Y, Yoshida Y, Tsuji S (1996) Characterization of mouse ST8Sia-II (STX) as a neural cell adhesion molecule-specific polysialic acid synthase. J Biol Chem 271:19457–19463PubMedCrossRefGoogle Scholar
  8. Kono M, Yoshida Y, Kojima N, Tsuji S (1996) Molecular cloning and expression of a fifth-type of a2,8-sialyltransferase (ST8SiaV): its substrate specificity is similar to that of SAT-V/III, which synthesize GD1c, GT1a, GQ1b and GT3. J Biol Chem 271:29366–29371PubMedCrossRefGoogle Scholar
  9. Lee YC, Kim YJ, Lee KY, Kirn KS, Kirn BU, Kim HN, Kirn CH, Do SI (1998) Cloning and expression of cDNA for a human α2,3 Galβl,4-GlcNAc α2,8-sialyltransferase (hST8Sia-III). Arch Biochem Biophys 360:41–46PubMedCrossRefGoogle Scholar
  10. Sasaki K, Kurata K, Kojima N, Kurosawa N, Ohta S, Hanai N, Tsuji S, Nishi T (1994) Expression cloning of a GM3-specific α2,8-sialyltransferase (GD3 synthase). J Biol Chem 269:15950–15956PubMedGoogle Scholar
  11. Sato C, Matsuda T, Kitajima K (2002) Neuronal differentiation-dependent expression of the distalic acid epitope on CD166 and its involvement in neuite formation in Neuro2A cells. J Biol Chem 277:45299–45305PubMedCrossRefGoogle Scholar
  12. Takashima S (2008) Characterization of mouse sialyltransferase genes: their evolution and diversity. Biosci Biotechnol Biochem 72:1155–1167PubMedCrossRefGoogle Scholar
  13. Takashima S, Tsuji S (2011) Functional diversity of mammalian sialyltransferases. Trends in Glycosci Glycotech 23:178–193. doi:10.4052/tigg.23.178CrossRefGoogle Scholar
  14. Tsuji S, Datta AK, Paulson JC (1996) Systematic nomenclature for sialyltransferases. Glycobiology 6(7):v–viiPubMedCrossRefGoogle Scholar
  15. Tsuji S (1999) Molecular cloning and characterization of sialyltransferases. In: Inoue Y, Lee YC, Troy FA (eds) Sialobiology and other novel forms of glycosylation. Gakushin, Osaka, pp 145–154Google Scholar
  16. Yoshida Y, Kojima N, Kurosawa N, Hamamoto T, Tsuji S (1995a) Molecular cloning of Siaα2,3Galβl,4GlcNAc α2,8-sialyltransferase from mouse brain. J Biol Chem 270:14628–14633PubMedCrossRefGoogle Scholar
  17. Yoshida Y, Kojima N, Tsuji S (1995b) Molecular cloning and characterization of a third type of N-glycan α2,8-sialyltransferase from mouse lung. J Biochem 118:658–664PubMedGoogle Scholar
  18. Yoshida Y, Kurosawa N, Kanematsu T, Taguchi A, Arita M, Kojima N, Tsuji S (1996) Unique genomic structure and expression of the mouse α2,8-sialyltransferase (ST8Sia-III) gene. Glycobiology 6:573–580PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Institute of Glycoscience, Tokai UniversityHiratsukaJapan
  2. 2.Laboratory of GlycobiologyThe Noguchi InstituteItabashiJapan

Personalised recommendations