Advertisement

Tissue Specific Transplantation Antigen P35B (= GDP-4-keto-6-D-Deoxymannose Epimerase-Reductase) (TSTA3)

  • Michela Tonetti
Reference work entry

Abstract

The 6-deoxyhexose l-fucose has a wide distribution in nature as component of bacterial, plant, and animal oligo- and polysaccharides. l-fucose is inserted in glycoconjugates by the action of several fucosyltransferases which use GDP-l-fucose as a substrate. The pioneering studies of Ginsburg indicated that GDP-l-fucose is formed by a de novo pathway starting from GDP-d-mannose (Ginsburg 1960, 1961). With few exceptions, this pathway represents the most important source of l-fucose in all kingdoms and the enzymes involved in it are highly conserved. A salvage pathway for GDP-l-fucose is also used to recycle the free sugar derived from exogenous sources or from glycoconjugate turnover (Park et al. 1998; Pastuszak et al. 1998). However, the contribution of the salvage pathway for the supply of intracellular GDP-l-fucose pool is quantitatively less important (Yurchenco and Atkinson 1975). Once formed in the cytosol, GDP-l-fucose is then transferred into the Golgi compartment by means of a specific transporter (Puglielli and Hirschberg 1999). Recent evidences have also suggested that GDP-l-fucose can also enter the ER, but using a different transport system (Ishikawa et al. 2010). Thus, the levels of GDP-l-fucose for the ER/Golgi fucosyltransferases result from both the activity of the two biosynthetic pathways and from the transporter efficiency. Indeed, availability of GDP-l-fucose substrate to the fucosyltransferases represents a mean to modulate fucosylated glycan production (Noda et al. 2003; Niittymäki et al. 2006; Moriwaki et al. 2007).

Keywords

Notch Signaling G6PD Deficiency Salvage Pathway Leukocyte Adhesion Deficiency Porcine Thyroid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Albermann C, Distler J, Piepersberg W (2000) Preparative synthesis of GDP-beta-L-fucose by recombinant enzymes from enterobacterial sources. Glycobiology 10:875–881PubMedCrossRefGoogle Scholar
  2. Andrianopoulos K, Wang L, Reeves PR (1998) Identification of the fucose synthetase gene in the colanic acid gene cluster of Escherichia coli K-12. J Bacteriol 180:998–1001PubMedCentralPubMedGoogle Scholar
  3. Appelmelk BJ, Vandenbroucke-Grauls CM (2000) H pylori and Lewis antigens. Gut 47:10–11PubMedCrossRefGoogle Scholar
  4. Basil CF, Zhao Y, Zavaglia K, Jin P, Panelli MC, Voiculescu S, Mandruzzato S, Lee HM, Seliger B, Freedman RS, Taylor PR, Hu N, Zanovello P, Marincola FM, Wang E (2006) Common cancer biomarkers. Cancer Res 66:2953–2961PubMedCrossRefGoogle Scholar
  5. Becker DJ, Myers JT, Ruff MM, Smith PL, Gillespie BW, Ginsburg DW, Lowe JB (2003) Strain-specific modification of lethality in fucose-deficient mice. Mamm Genome 14:130–139PubMedCrossRefGoogle Scholar
  6. Bonin CP, Reiter WD (2000) A bifunctional epimerase-reductase acts downstream of the MUR1 gene product and completes the de novo synthesis of GDP-L-fucose in Arabidopsis. Plant J 21:445–454PubMedCrossRefGoogle Scholar
  7. Burdick MM, Chu JT, Godar S, Sackstein R (2006) HCELL is the major E- and L-selectin ligand expressed on LS174T colon carcinoma cells. J Biol Chem 281:13899–13905PubMedCrossRefGoogle Scholar
  8. Byun SG, Kim MD, Lee WH, Lee KJ, Han NS, Seo JH (2007) Production of GDP-L-fucose, L-fucose donor for fucosyloligosaccharide synthesis, in recombinant Escherichia coli. Appl Microbiol Biotechnol 74:768–775PubMedCrossRefGoogle Scholar
  9. Camardella L, Carratore V, Ciardiello MA, Damonte G, Benatti U, De Flora A (1995) Primary structure of human erythrocyte nicotinamide adenine dinucleotide phosphate (NADP[H])-binding protein FX: identification with the mouse tum- transplantation antigen P35B. Blood 85:264–267PubMedGoogle Scholar
  10. Chang S, Duerr B, Serif G (1988) An epimerase-reductase in L-fucose synthesis. J Biol Chem 263:1693–1697PubMedGoogle Scholar
  11. Coyne MJ, Reinap B, Lee MM, Comstock LE (2005) Human symbionts use a host-like pathway for surface fucosylation. Science 307:1778–1781PubMedCrossRefGoogle Scholar
  12. Eshel R, Zanin A, Sagi-Assif O, Meshel T, Smorodinsky NI, Dwir O, Alon R, Brakenhoff R, van Dongen G, Witz IP (2000) The GPI-linked Ly-6 antigen E48 regulates expression levels of the FX enzyme and of E-selectin ligands on head and neck squamous carcinoma cells. J Biol Chem 275:12833–12840PubMedCrossRefGoogle Scholar
  13. Eshel R, Besser M, Zanin A, Sagi-Assif O, Witz IP (2001) The FX enzyme is a functional component of lymphocyte activation. Cell Immunol 213:141–148PubMedCrossRefGoogle Scholar
  14. Etzioni A, Frydman M, Pollack S, Avidor I, Phillips ML, Paulson JC, Gershoni-Baruch R (1992) Brief report: recurrent severe infections caused by a novel leukocyte adhesion deficiency. N Engl J Med 327:1789–1792PubMedCrossRefGoogle Scholar
  15. Ginsburg V (1960) Formation of guanosine diphosphate L-fucose from guanosine diphosphate D-mannose. J Biol Chem 235:2196–2201PubMedGoogle Scholar
  16. Ginsburg V (1961) Studies on the biosynthesis of guanosine diphosphate L-fucose. J Biol Chem 236:2389–2393PubMedGoogle Scholar
  17. Hidalgo A, Weiss LA, Frenette PS (2002) Functional selectin ligands mediating human CD34(+) cell interactions with bone marrow endothelium are enhanced postnatally. J Clin Invest 110:559–569PubMedCentralPubMedCrossRefGoogle Scholar
  18. Ishikawa HO, Ayukawa T, Nakayama M, Higashi S, Kamiyama S, Nishihara S, Aoki K, Ishida N, Sanai Y, Matsuno K (2010) Two pathways for importing GDP-fucose into the endoplasmic reticulum lumen function redundantly in the O-fucosylation of notch in Drosophila. J Biol Chem 285:4122–4129PubMedCrossRefGoogle Scholar
  19. Järvinen N, Mäki M, Räbinä J, Roos C, Mattila P, Renkonen R (2001) Cloning and expression of Helicobacter pylori GDP-L-fucose synthesizing enzymes (GMD and GMER) in Saccharomyces cerevisiae. Eur J Biochem 268:6458–6464PubMedCrossRefGoogle Scholar
  20. Jörnvall H, Persson B, Krook M, Atrian S, Gonzalez-Duarte R, Jeffery J, Ghosh D (1995) Short-chain dehydrogenases/reductases (SDR). Biochemistry 34:6003–6013PubMedCrossRefGoogle Scholar
  21. Kannagi R (1997) Carbohydrate-mediated cell adhesion involved in hematogenous metastasis of cancer. Glycoconj J 14:577–584PubMedCrossRefGoogle Scholar
  22. Kim S, Kon M, Delisi C (2012) Pathway-based classification of cancer subtypes. Biol Direct 3:7–21Google Scholar
  23. Lamrabet Y, Bellogín RA, Cubo T, Espuny R, Gil A, Krishnan HB, Megias M, Ollero FJ, Pueppke SG, Ruiz-Sainz JE, Spaink HP, Tejero-Mateo P, Thomas-Oates J, Vinardell JM (1999) Mutation in GDP-fucose synthesis genes of Sinorhizobium fredii alters Nod factors and significantly decreases competitiveness to nodulate soybeans. Mol Plant Microbe Interact 12:207–217PubMedCrossRefGoogle Scholar
  24. Lau ST, Tanner ME (2008) Mechanism and active site residues of GDP-fucose synthase. J Am Chem Soc 130:17593–17602PubMedCrossRefGoogle Scholar
  25. Lenzerini L, Benatti U, Morelli A, Pontremoli S, De Flora A, Piazza A, Rinaldi A, Filippi G, Siniscalco M (1981) Genetic variation in the quantitative levels of an NADP (H)-binding protein (FX) in human erythrocytes. Blood 57:209–217PubMedGoogle Scholar
  26. Liu T, Hu B, Choi YY, Chung M, Ullenbruch M, Yu H, Lowe JB, Phan SH (2009) Notch1 signaling in FIZZ1 induction of myofibroblast differentiation. Am J Pathol 174:1745–1755PubMedCrossRefGoogle Scholar
  27. Lowe JB (2003) Glycan-dependent leukocyte adhesion and recruitment in inflammation. Curr Opin Cell Biol 15:531–538PubMedCrossRefGoogle Scholar
  28. Lübke T, Marquardt T, Etzioni A, Hartmann E, von Figura K, Körner C (2001) Complementation cloning identifies CDG-IIc, a new type of congenital disorders of glycosylation, as a GDP-fucose transporter deficiency. Nat Genet 28:73–76PubMedGoogle Scholar
  29. Lühn K, Wild MK, Eckhardt M, Gerardy-Schahn R, Vestweber D (2001) The gene defective in leukocyte adhesion deficiency II encodes a putative GDP-fucose transporter. Nat Genet 28:69–72PubMedGoogle Scholar
  30. Malaga W, Constant P, Euphrasie D, Cataldi A, Daffé M, Reyrat JM, Guilhot C (2008) Deciphering the genetic bases of the structural diversity of phenolic glycolipids in strains of the Mycobacterium tuberculosis complex. J Biol Chem 283:15177–15184PubMedCrossRefGoogle Scholar
  31. Martin A, Ruggiero-Lopez D, Broquet P, Richard M, Louisot P (1989) High-performance liquid chromatographic study of GDP-mannose and GDP-fucose metabolism. J Chromatogr 497:319–325PubMedCrossRefGoogle Scholar
  32. Mattila P, Räbinä J, Hortling S, Helin J, Renkonen R (2000) Functional expression of Escherichia coli enzymes synthesizing GDP-L-fucose from inherent GDP-D-mannose in Saccharomyces cerevisiae. Glycobiology 10:1041–1047PubMedCrossRefGoogle Scholar
  33. McGowan CC, Necheva A, Thompson SA, Cover TL, Blaser MJ (1998) Acid-induced expression of an LPS-associated gene in Helicobacter pylori. Mol Microbiol 30:19–31PubMedCrossRefGoogle Scholar
  34. Menon S, Stahl M, Kumar R, Xu GY, Sullivan F (1999) Stereochemical course and steady state mechanism of the reaction catalyzed by the GDP-fucose synthetase from Escherichia coli. J Biol Chem 274:26743–26750PubMedCrossRefGoogle Scholar
  35. Mergaert P, Van Montagu M, Holsters M (1997) The nodulation gene nolK of Azorhizobium caulinodans is involved in the formation of GDP-fucose from GDP-mannose. FEBS Lett 409:312–316PubMedCrossRefGoogle Scholar
  36. Morelli A, De Flora A (1977) Isolation and partial charaterization of an NADP- and NADPH- binding protein from human erythrocytes. Arch Biochem Biophys 179:698–705PubMedCrossRefGoogle Scholar
  37. Moriwaki K, Noda K, Nakagawa T, Asahi M, Yoshihara H, Taniguchi N, Hayashi N, Miyoshi E (2007) A high expression of GDP-fucose transporter in hepatocellular carcinoma is a key factor for increases in fucosylation. Glycobiology 17:1311–1320PubMedCrossRefGoogle Scholar
  38. Moriwaki K, Narisada M, Imai T, Shinzaki S, Miyoshi E (2010) The effect of epigenetic regulation of fucosylation on TRAIL-induced apoptosis. Glycoconj J 27:649–659PubMedCrossRefGoogle Scholar
  39. Myers J, Huang Y, Wei L, Yan Q, Huang A, Zhou L (2010) Fucose-deficient hematopoietic stem cells have decreased self-renewal and aberrant marrow niche occupancy. Transfusion 50:2660–2669PubMedCentralPubMedCrossRefGoogle Scholar
  40. Nakayama K, Maeda Y, Jigami Y (2003) Interaction of GDP-4-keto-6-deoxymannose-3,5-epimerase-4-reductase with GDP-mannose-4,6-dehydratase stabilizes the enzyme activity for formation of GDP-fucose from GDP-mannose. Glycobiology 13:673–680PubMedCrossRefGoogle Scholar
  41. Niittymäki J, Mattila P, Renkonen R (2006) Differential gene expression of GDP-L-fucose-synthesizing enzymes, GDP-fucose transporter and fucosyltransferase VII. APMIS 114:539–548PubMedCrossRefGoogle Scholar
  42. Noda K, Miyoshi E, Gu J, Gao CX, Nakahara S, Kitada T, Honke K, Suzuki K, Yoshihara H, Yoshikawa K, Kawano K, Tonetti M, Kasahara A, Hori M, Hayashi N, Taniguchi N (2003) Relationship between elevated FX expression and increased production of GDP-L-fucose, a common donor substrate for fucosylation in human hepatocellular carcinoma and hepatoma cell lines. Cancer Res 63:6282–6289PubMedGoogle Scholar
  43. Park SH, Pastuszak I, Drake R, Elbein AD (1998) Purification to apparent homogeneity and properties of pig kidney L-fucose kinase. J Biol Chem 273:5685–5691PubMedCrossRefGoogle Scholar
  44. Pastuszak I, Ketchum C, Hermanson G, Sjoberg EJ, Drake R, Elbein AD (1998) GDP-L-fucose pyrophosphorylase. Purification, cDNA cloning, and properties of the enzyme. J Biol Chem 273:30165–30174PubMedCrossRefGoogle Scholar
  45. Puglielli L, Hirschberg CB (1999) Reconstitution, identification and purification of the rat liver golgi membrane GDP-fucose transporter. J Biol Chem 274:35596–35600PubMedCrossRefGoogle Scholar
  46. Räbinä J, Mäki M, Savilahti EM, Järvinen N, Penttilä L, Renkonen R (2001) Analysis of nucleotide sugars from cell lysates by ion-pair solid-phase extraction and reversed-phase high-performance liquid chromatography. Glycoconj J 18:799–805PubMedCrossRefGoogle Scholar
  47. Reeves PR, Hobbs M, Valvano MA, Skurnik M, Whitfield C, Coplin D, Kido N, Klena J, Maskell D, Raetz CR, Rick PD (1996) Bacterial polysaccharide synthesis and gene nomenclature. Trends Microbiol 4:495–503PubMedCrossRefGoogle Scholar
  48. Ren Y, Perepelov AV, Wang H, Zhang H, Knirel YA, Wang L, Chen W (2010) Biochemical characterization of GDP-L-fucose de novo synthesis pathway in fungus Mortierella alpine. Biochem Biophys Res Commun 391:1663–1669PubMedCrossRefGoogle Scholar
  49. Rhomberg S, Fuchsluger C, Rendić D, Paschinger K, Jantsch V, Kosma P, Wilson IB (2006) Reconstitution in vitro of the GDP-fucose biosynthetic pathways of Caenorhabditis elegans and Drosophila melanogaster. FEBS J 273:2244–2256PubMedCrossRefGoogle Scholar
  50. Rizzi M, Tonetti M, Vigevani P, Sturla L, Bisso A, Flora AD, Bordo D, Bolognesi M (1998) GDP-4-keto-6-deoxy-D-mannose epimerase/reductase from Escherichia coli, a key enzyme in the biosynthesis of GDP-L-fucose, displays the structural characteristics of the red protein homology superfamily. Structure 6:1453–1465PubMedCrossRefGoogle Scholar
  51. Rosano C, Bisso A, Izzo G, Tonetti M, Sturla L, De Flora A, Bolognesi M (2000) Probing the catalytic mechanism of GDP-4-keto-6-deoxy-D-mannose Epimerase/Reductase by kinetic and crystallographic characterization of site-specific mutants. J Mol Biol 303:77–91PubMedCrossRefGoogle Scholar
  52. Rotunno M, Hu N, Su H, Wang C, Goldstein AM, Bergen AW, Consonni D, Pesatori AC, Bertazzi PA, Wacholder S, Shih J, Caporaso NE, Taylor PR, Landi MT (2011) A gene expression signature from peripheral whole blood for stage I lung adenocarcinoma. Cancer Prev Res (Phila) 4:1599–1608CrossRefGoogle Scholar
  53. Ruggiero-Lopez D, Biol MC, Louisot P, Martin A (1991) Participation of an endogenous inhibitor of fucosyltransferase activities in the developmental regulation of intestinal fucosylation processes. Biochem J 279:801–806PubMedGoogle Scholar
  54. Sackstein R, Merzaban JS, Cain DW, Dagia NM, Spencer JA, Lin CP, Wohlgemuth R (2008) Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat Med 14:181–187PubMedCrossRefGoogle Scholar
  55. Saldova R, Dempsey E, Pérez-Garay M, Mariño K, Watson JA, Blanco-Fernández A, Struwe WB, Harvey DJ, Madden SF, Peracaula R, McCann A, Rudd PM (2011) 5-AZA-2′-deoxycytidine induced demethylation influences N-glycosylation of secreted glycoproteins in ovarian cancer. Epigenetics 6:1362–1372PubMedCrossRefGoogle Scholar
  56. Shao L, Haltiwanger RS (2003) O-fucose modifications of epidermal growth factor-like repeats and thrombospondin type 1 repeats: unusual modifications in unusual places. Cell Mol Life Sci 60:241–250PubMedCrossRefGoogle Scholar
  57. Smith PL, Myers JT, Rogers CE, Zhou L, Petryniak B, Becker DJ, Homeister JW, Lowe JB (2002) Conditional control of selectin ligand expression and global fucosylation events in mice with a targeted mutation at the FX locus. J Cell Biol 158:801–815PubMedCrossRefGoogle Scholar
  58. Somers WS, Stahl ML, Sullivan FX (1998) GDP-fucose synthetase from Escherichia coli: structure of a unique member of the short-chain dehydrogenase/reductase family that catalyzes two distinct reactions at the same active site. Structure 6:1601–1612PubMedCrossRefGoogle Scholar
  59. Staudacher E, Altmann F, Wilson IB, März L (1999) Fucose in N-glycans: from plant to man. Biochim Biophys Acta 1473:216–236PubMedCrossRefGoogle Scholar
  60. Sullivan FX, Kumar R, Kriz R, Stahl M, Xu GY, Rouse J, Chang XJ, Boodhoo A, Potvin B, Cumming DA (1998) Molecular cloning of human GDP-mannose 4,6-dehydratase and reconstitution of GDP-fucose biosynthesis in vitro. J Biol Chem 273:8193–8202PubMedCrossRefGoogle Scholar
  61. Szikora JP, Van Pel A, Brichard V, André M, Van Baren N, Henry P, De Plaen E, Boon T (1990) Structure of the gene of tum- transplantation antigen P35B: presence of a point mutation in the antigenic allele. EMBO J 9:1041–1050PubMedGoogle Scholar
  62. Szikora JP, Van Pel A, Boon T (1993) Tum- mutation P35B generates the MHC-binding site of a new antigenic peptide. Immunogenetics 37:135–138PubMedCrossRefGoogle Scholar
  63. Takahashi M, Kuroki Y, Ohtsubo K, Taniguchi N (2009) Core fucose and bisecting GlcNAc, the direct modifiers of the N-glycan core: their functions and target proteins. Carbohydr Res 344:1387–1390PubMedCrossRefGoogle Scholar
  64. Thoden JB, Frey PA, Holden HM (1996) High-resolution X-ray structure of UDP-galactose 4-epimerase complexed with UDP-phenol. Protein Sci 5:2149–2161PubMedCrossRefGoogle Scholar
  65. Tonetti M, Sturla L, Bisso A, Benatti U, De Flora A (1996) Synthesis of GDP-L-fucose by the human FX protein. J Biol Chem 271:27274–27279PubMedCrossRefGoogle Scholar
  66. Tonetti M, Zanardi D, Gurnon JR, Fruscione F, Armirotti A, Damonte G, Sturla L, De Flora A, Van Etten JL (2003) Paramecium bursaria Chlorella virus 1 encodes two enzymes involved in the biosynthesis of GDP-L-fucose and GDP-D-rhamnose. J Biol Chem 278:21559–21565PubMedCrossRefGoogle Scholar
  67. Turnock DC, Ferguson MA (2007) Sugar nucleotide pools of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. Eukaryot Cell 6:1450–1463PubMedCentralPubMedCrossRefGoogle Scholar
  68. Turnock DC, Izquierdo L, Ferguson MA (2007) The de novo synthesis of GDP-fucose is essential for flagellar adhesion and cell growth in Trypanosoma brucei. J Biol Chem 282:28853–28863PubMedCrossRefGoogle Scholar
  69. Turton JF, Perry C, Elgohari S, Hampton CV (2010) PCR characterization and typing of Klebsiella pneumoniae using capsular type-specific, variable number tandem repeat and virulence gene targets. J Med Microbiol 59:541–547PubMedCrossRefGoogle Scholar
  70. Waterhouse CC, Johnson S, Phillipson M, Zbytnuik L, Petri B, Kelly M, Lowe JB, Kubes P (2010) Secretory cell hyperplasia and defects in Notch activity in a mouse model of leukocyte adhesion deficiency type II. Gastroenterology 138:1079–1090PubMedCrossRefGoogle Scholar
  71. Wu B, Zhang Y, Wang PG (2001) Identification and characterization of GDP-D-mannose 4,6-dehydratase and GDP-L-fucose snthetase in a GDP-L-fucose biosynthetic gene cluster from Helicobacter pylori. Biochem Biophys Res Commun 285:364–371PubMedCrossRefGoogle Scholar
  72. Yan Q, Yao D, Wei LL, Huang Y, Myers J, Zhang L, Xin W, Shim J, Man Y, Petryniak B, Gerson S, Lowe JB, Zhou L (2010) O-fucose modulates notch-controlled blood lineage commitment. Am J Pathol 176:2921–2934PubMedCrossRefGoogle Scholar
  73. Yu K, Lee CH, Tan PH, Tan P (2004) Conservation of breast cancer molecular subtypes and transcriptional patterns of tumor progression across distinct ethnic populations. Clin Cancer Res 10:5508–5517PubMedCrossRefGoogle Scholar
  74. Yurchenco PD, Atkinson PH (1975) Fucosyl-glycoprotein and precursor pools in HeLa cells. Biochemistry 14:3107–3114PubMedCrossRefGoogle Scholar
  75. Zipin A, Israeli-Amit M, Meshel T, Sagi-Assif O, Yron I, Lifshitz V, Bacharach E, Smorodinsky NI, Many A, Czernilofsky PA, Morton DL, Witz IP (2004) Tumor-microenvironment interactions: the fucose-generating FX enzyme controls adhesive properties of colorectal cancer cells. Cancer Res 64:6571–6578PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Department of Experimental MedicineUniversity of GenovaGenoaItaly

Personalised recommendations