ST8 Alpha-N-Acetyl-Neuraminide Alpha-2,8-Sialyltransferase 6 (ST8SIA6)

Reference work entry


The members of the α2,8-sialyltransferase (ST8Sia) family transfer sialic acid from CMP-sialic acid (CMP-Sia) to the terminal sialic acid residues of glycoconjugates through an α2,8-linkage. Six members of the ST8Sia family have been identified in mammals to date. These members can be classified into two or three subfamilies according to amino acid sequence similarities, substrate specificities, and gene structures (Harduin-Lepers et al. 2005, 2008; Takashima 2008; Harduin-Lepers 2010). The first subfamily consists of three members – ST8Sia-II, ST8Sia-III, and ST8Sia-IV. ST8Sia-II and ST8SIa-IV can synthesize polysialic acid, the homopolymer of α2,8-linked sialic acid, on specific molecules such as neural cell adhesion molecule (NCAM). However, ST8Sia-III cannot synthesize polysialic acid on NCAM. Therefore, this subfamily can be further subdivided into two groups – polysialic acid synthetases ST8Sia-II and ST8Sia-IV and ST8Sia-III. The other subfamily consists of three members – ST8Sia-I, ST8Sia-V, and ST8Sia-VI. ST8Sia-I is known as a ganglioside GD3 synthetase and ST8Sia-V is also thought to be involved in the biosynthesis of gangliosides such as GD1c, GT1a, GQ1b, and GT3. In contrast to the other two members of this subfamily, ST8Sia-VI exhibits low activity toward glycolipids; however, it exhibits high activity toward O-glycans of glycoproteins (Takashima et al. 2002; Teintenier-Lelièvre et al. 2005). The overall amino acid sequence identity of mouse ST8Sia-VI is 82.7 % to human ST8Sia-VI, 42.0 % to mouse ST8Sia-I, and 38.3 % to mouse ST8Sia-V, respectively. Analysis of the genomic structures of the ST8Sia-I, ST8Sia-V, and ST8Sia-VI genes suggested that these genes arose from a common ancestral gene (Harduin-Lepers et al. 2005; Takashima 2008; Harduin-Lepers 2010).


Sialic Acid Neural Cell Adhesion Molecule Acceptor Substrate Polysialic Acid Common Ancestral Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Avril T, North SJ, Haslam SM, Willison HJ, Crocker PR (2006) Probing the cis interactions of the inhibitory receptor Siglec-7 with α2,8-disialylated ligands on natural killer cells and other leukocytes using glycan-specific antibodies and by analysis of α2,8-sialyltransferase gene expression. J Leukoc Biol 80:787–796. doi:10.1189/jlb.1005559PubMedCrossRefGoogle Scholar
  2. Chang LY, Mir AM, Thisse C, Guérardel Y, Delannoy P, Thisse B, Harduin-Lepers A (2009) Molecular cloning and characterization of the expression pattern of the zebrafish α2,8-sialyltransferases (ST8Sia) in the developing nervous system. Glycoconj J 26:263–275. doi:10.1007/s10719-008-9165-1PubMedCrossRefGoogle Scholar
  3. Datta AK (2009) Comparative sequence analysis in the sialyltransferase protein family: analysis of motifs. Curr Drug Targets 10:483–498PubMedCrossRefGoogle Scholar
  4. Drickamer K (1993) A conserved disulphide bond in sialyltransferases. Glycobiology 3:2–3. doi:10.1093/glycob/3.1.2PubMedCrossRefGoogle Scholar
  5. Geremia RA, Harduin-Lepers A, Delannoy P (1997) Identification of two novel conserved amino acid residues in eukaryotic sialyltransferase: implications for their mechanism of action. Glycobiology 7(2):v–vii. doi:10.1093/glycob/7.2.161-aPubMedCrossRefGoogle Scholar
  6. Harduin-Lepers A (2010) Comprehensive analysis of sialyltransferases in vertebrate genomes. Glycobiol Insights 2:29–61CrossRefGoogle Scholar
  7. Harduin-Lepers A, Mollicone R, Delannoy P, Oriol R (2005) The animal sialyltransferases and sialyltransferase-related genes: a phylogenetic approach. Glycobiology 15:805–817. doi:10.1093/glycob/cwi063PubMedCrossRefGoogle Scholar
  8. Harduin-Lepers A, Petit D, Mollicone R, Delannoy P, Petit JM, Oriol R (2008) Evolutionary history of the alpha2,8-sialyltransferase (ST8Sia) gene family: Tandem duplications in early deuterostomes explain most of the diversity found in the vertebrate ST8Sia genes. BMC Evol Biol 8:258. doi:10.1186/1471-2148-8-258PubMedCentralPubMedCrossRefGoogle Scholar
  9. Jeanneau C, Chazalet V, Augé C, Soumpasis DM, Harduin-Lepers A, Delannoy P, Imberty A, Breton C (2004) Structure-function analysis of the human sialyltransferase ST3Gal I. J Biol Chem 279:13461–13468. doi:10.1074/jbc.M311764200Google Scholar
  10. Kitazume-Kawaguchi S, Kabata S, Arita M (2001) Differential biosynthesis of polysialic or disialic acid structure by ST8Sia II and ST8Sia IV. J Biol Chem 276:15696–15703. doi:10.1074/jbc.M010371200PubMedCrossRefGoogle Scholar
  11. Livingston BD, Paulson JC (1993) Polymerase chain reaction cloning of a developmentally regulated member of the sialyltransferase gene family. J Biol Chem 268:11504–11507PubMedGoogle Scholar
  12. Patel RY, Balaji PV (2006) Identification of linkage-specific sequence motifs in sialyltransferases. Glycobiology 16:108–116. doi:10.1093/glycob/cwj046PubMedCrossRefGoogle Scholar
  13. Sato C, Yasukawa Z, Honda N, Matsuda T, Kitajima K (2001) Identification and adipocyte differentiation-dependent expression of the unique disialic acid residue in an adipose tissue-specific glycoprotein, adipo Q. J Biol Chem 276:28849–28856. doi:10.1074/jbc.M104148200PubMedCrossRefGoogle Scholar
  14. Sato C, Matsuda T, Kitajima K (2002) Neuronal differentiation-dependent expression of the disialic acid epitope on CD166 and its involvement in neurite formation in Neuro2A cells. J Biol Chem 277:45299–45305. doi:10.1074/jbc.M206046200PubMedCrossRefGoogle Scholar
  15. Takashima S (2008) Characterization of mouse sialyltransferase genes: their evolution and diversity. Biosci Biotechnol Biochem 72:1155–1167. doi:10.1271/bbb.80025PubMedCrossRefGoogle Scholar
  16. Takashima S, Tsuji S (2011) Functional diversity of mammalian sialyltransferases. Trends Glycosci Glycotech 23:178–193. doi:10.4052/tigg.23.178CrossRefGoogle Scholar
  17. Takashima S, Ishida Hk, Inazu T, Ando T, Ishida H, Kiso M, Tsuji S, Tsujimoto M (2002) Molecular cloning and expression of a sixth type of α2,8-sialyltransferase (ST8Sia VI) that sialylates O-glycans. J Biol Chem 277:24030–24038. doi:10.1074/jbc.M112367200PubMedCrossRefGoogle Scholar
  18. Teintenier-Lelièvre M, Julien S, Juliant S, Guerardel Y, Duonor-Cérutti M, Delannoy P, Harduin-Lepers A (2005) Molecular cloning and expression of a human hST8Sia VI (α2,8-sialyltransferase) responsible for the synthesis of the diSia motif on O-glycosylproteins. Biochem J 392:665–674. doi:10.1042/BJ20051120PubMedCrossRefGoogle Scholar
  19. Tsuji S, Datta AK, Paulson JC (1996) Systematic nomenclature for sialyltransferases. Glycobiology 6(7):v–viiPubMedCrossRefGoogle Scholar
  20. Yamaji T, Teranishi T, Alphey MS, Crocker PR, Hashimoto Y (2001) A small region of the natural killer cell receptor, Siglec-7, is responsible for its preferred binding to α2,8-disialyl and branched α2,6-sialyl residues. J Biol Chem 277:6324–6332. doi:10.1074/jbc.M110146200PubMedCrossRefGoogle Scholar
  21. Yoshida Y, Kojima N, Kurosawa N, Hamamoto T, Tsuji S (1995) Molecular cloning of Siaα2,3Galβ1,4GlcNAc α2,8-sialyltransferase from mouse brain. J Biol Chem 270:14628–14633. doi:10.1074/jbc.270.24.14628PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Laboratory of GlycobiologyThe Noguchi InstituteItabashiJapan
  2. 2.Institute of GlycoscienceTokai UniversityHiratsukaJapan

Personalised recommendations