ST6 N-Acetylgalactosaminide Alpha-2,6-Sialyltransferase 3 (ST6GALNAC3)

  • Shou Takashima
  • Shuichi Tsuji
Reference work entry


The members of the ST6GalNAc family transfer sialic acid from CMP-sialic acid (CMP-Sia) to the N-acetylgalactosamine residues of glycoconjugates through an α2,6-linlage. To date, six members of the ST6GalNAc family have been identified in both the mouse and humans. From amino acid sequence similarities, substrate specificities, and gene structures, these members can be classified into two subfamilies. One subfamily consists of two members, ST6GalNAc-I and ST6GalNAc-II. The other subfamily consists of four members, ST6GalNAc-III, ST6GalNAc-IV, ST6GalNAc-V, and ST6GalNAc-VI. These members except ST6GalNAc-IV can efficiently synthesize the ganglioside GD1α from GM1b (Sjoberg et al. 1996; Lee et al. 1999; Okajima et al. 1999, 2000; Ikehara et al. 1999; Tsuchida et al. 2005). GD1α has been implicated as a molecular component of a variety of important biological processes. Each gene has different tissue-specific expression patterns, suggesting that there may be several tissue-specific ST6GalNAc members capable of synthesizing GD1α. ST6GalNAc-III also exhibits sialyltransferase activity toward O-glycans and forms NeuAcα2-3Galβ1-3(NeuAcα2-6)GalNAc structure. ST6GalNAc-III is composed of 305 amino acids in length for human, mouse, and rat enzymes. The overall amino acid sequence identity of mouse ST6GalNAc-III is 94.4 % to rat ST6GalNAc-III, 85.3 % to human ST6GalNAc-III, 43.0 % to mouse ST6GalNAc-IV, 42.6 % to mouse ST6GalNAc-V, and 41.4 % to mouse ST6GalNAc-VI, but ST6GalNAc-III shows no significant similarity to other sialyltransferases except in sialylmotifs. Analysis of the genomic structures of the ST6GalNAc-III, ST6GalNAc-IV, ST6GalNAc-V, and ST6GalNAc-VI genes suggested that these genes arose from a common ancestral gene (Harduin-Lepers et al. 2005; Takashima 2008; Harduin-Lepers 2010).


Sialic Acid Acceptor Substrate Important Biological Process Common Ancestral Gene Selenious Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Furuya S, Irie F, Hashikawa T, Nakazawa K, Kozakai A, Hasegawa A, Sudo K, Hirabayashi Y (1994) Ganglioside GD1α in cerebellar Purkinje cells. Its specific absence in mouse mutants with Purkinje cell abnormality and altered immunoreactivity in response to conjunctive stimuli causing long-term desensitization. J Biol Chem 269:32418–32425PubMedGoogle Scholar
  2. Furuya S, Hashikawa T, Hirabayashi Y (1996) Restricted occurrence of an unusual ganglioside GD1α in rat brain and its possible involvement in dendritic growth of cerebellar Purkinje neurons. J Neurosci Res 44:73–83. doi:10.1002/(SICI)1097-4547(19960401)44:1<73::AID-JNR10>3.0.CO;2-9PubMedCrossRefGoogle Scholar
  3. Harduin-Lepers A (2010) Comprehensive analysis of sialyltransferases in vertebrate genomes. Glycobiol Insights 2:29–61CrossRefGoogle Scholar
  4. Harduin-Lepers A, Mollicone R, Delannoy P, Oriol R (2005) The animal sialyltransferases and sialyltransferase-related genes: a phylogenetic approach. Glycobiology 15:805–817. doi:10.1093/glycob/cwi063PubMedCrossRefGoogle Scholar
  5. Higai K, Ishihara S, Matsumoto K (2006) NFκB-p65 dependent transcriptional regulation of glycosyltransferases in human colon adenocarcinoma HT-29 by stimulation with tumor necrosis factor α. Biol Pharm Bull 29:2372–2377. doi:10.1248/bpb.29.2372PubMedCrossRefGoogle Scholar
  6. Ikehara Y, Shimizu N, Kono M, Nishihara S, Nakanishi H, Kitamura T, Narimatsu H, Tsuji S, Tatematsu M (1999) A novel glycosyltransferase with a polyglutamine repeat; a new candidate for GD1α synthase (ST6GalNAc V). FEBS Lett 463:92–96. doi:10.1016/S0014-5793(99)01605-1PubMedCrossRefGoogle Scholar
  7. Lee YC, Kaufmann M, Kitazume-Kawaguchi S, Kono M, Takashima S, Kurosawa N, Liu H, Pircher H, Tsuji S (1999) Molecular cloning and functional expression of two members of mouse NeuAcα2,3Galβ1,3GalNAc GalNAcα2,6-sialyltransferase family, ST6GalNAc III and IV. J Biol Chem 274:11958–11967. doi:10.1074/jbc.274.17.11958PubMedCrossRefGoogle Scholar
  8. Momoeda M, Momoeda K, Takamizawa K, Matsuzawa A, Hanaoka K, Taketani Y, Iwamori M (1995) Characteristic expression of GD1α-ganglioside during lactation in murine mammary gland. Biochim Biophys Acta 1256:151–156PubMedCrossRefGoogle Scholar
  9. Momoeda M, Fukuta S, Iwamori Y, Taketani Y, Iwamori M (2007) Prolactin-dependent expression of GD1α ganglioside, as a component of milk fat globule, in the murine mammary glands. J Biochem 142:525–531. doi:10.1093/jb/mvm175PubMedCrossRefGoogle Scholar
  10. Okajima T, Fukumoto S, Ito H, Kiso M, Hirabayashi Y, Urano T, Furukawa K, Furukawa K (1999) Molecular cloning of brain-specific GD1α synthase (ST6GalNAc V) containing CAG/glutamine repeats. J Biol Chem 274:30557–30562. doi:10.1074/jbc.274.43.30557PubMedCrossRefGoogle Scholar
  11. Okajima T, Chen HH, Ito H, Kiso M, Tai T, Furukawa K, Urano T, Furukawa K (2000) Molecular cloning and expression of mouse GD1α/GT1aα/GQ1bα synthase (ST6GalNAc VI) gene. J Biol Chem 275:6717–6723. doi:10.1074/jbc.275.10.6717PubMedCrossRefGoogle Scholar
  12. Sjoberg ER, Kitagawa H, Glushka J, van Halbeek H, Paulson JC (1996) Molecular cloning of a developmentally regulated N-acetylgalactosamine α2,6-sialyltransferase specific for sialylated glycoconjugates. J Biol Chem 271:7450–7459. doi:10.1074/jbc.271.13.7450PubMedCrossRefGoogle Scholar
  13. Takashima S (2008) Characterization of mouse sialyltransferase genes: their evolution and diversity. Biosci Biotechnol Biochem 72:1155–1167. doi:10.1271/bbb.80025PubMedCrossRefGoogle Scholar
  14. Takashima S, Tsuji S (2011) Functional diversity of mammalian sialyltransferases. Trends Glycosci Glycotech 23:178–193. doi:10.4052/tigg.23.178CrossRefGoogle Scholar
  15. Takashima S, Kurosawa N, Tachida Y, Inoue M, Tsuji S (2000) Comparative analysis of the genomic structures and promoter activities of mouse Siaα2,3Galβ1,3GalNAc GalNAcα2,6-sialyltransferase genes (ST6GalNAc III and IV): characterization of their Sp1 binding sites. J Biochem 127:399–409PubMedCrossRefGoogle Scholar
  16. Tsuchida A, Ogiso M, Nakamura Y, Kiso M, Furukawa K, Furukawa K (2005) Molecular cloning and expression of human ST6GalNAc III: restricted tissue distribution and substrate specificity. J Biochem 138:237–243. doi:10.1093/jb/mvi124PubMedCrossRefGoogle Scholar
  17. Tsuji S, Datta AK, Paulson JC (1996) Systematic nomenclature for sialyltransferases. Glycobiology 6(7):v–viiPubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Laboratory of GlycobiologyThe Noguchi InstituteItabashi, TokyoJapan
  2. 2.Institute of GlycoscienceTokai UniversityHiratsuka, KanagawaJapan

Personalised recommendations