Skip to main content

ST6 Beta-Galactoside Alpha-2,6-Sialyltranferase 2 (ST6GAL2)

  • Reference work entry
  • First Online:

Abstract

Sialic acids are derivatives of the negatively charged acidic sugar neuraminic acid. Over 50 naturally occurring members of the sialic acid family have been discovered to date (Angata and Varki 2002); N-acetylneuraminic acid (NeuAc), N-glycolylneuraminic acid (NeuGc), and deaminoneuraminic acid (KDN) are representative members of this family. The importance of these molecules is demonstrated by the fact that impairment of their biosynthesis is lethal to mice embryos (Schwarzkopf et al. 2002). Sialic acids usually form the terminal ends of the carbohydrate groups of glycoconjugates. Because of their negative charge and their exposed positions on cell-surface molecules, they often function as key determinants of oligosaccharide structures that mediate a variety of biological processes including cell–cell interaction, cell migration, adhesion, metastasis, and pathogen infection. In fact, there are numerous sialic acid recognition molecules such as the sialic acid-binding immunoglobulin-like lectins (siglecs) (Crocker et al. 2007). A superfamily of glycosyltransferases called sialyltransferases catalyzes the synthesis of sialylglycoconjugates by transferring a sialic acid molecule from the donor substrate CMP-Sia to an acceptor carbohydrate. To date, cDNA cloning of 20 mammalian sialyltransferases has been completed, and their enzymatic properties have been analyzed. These enzymes are grouped into four families according to the type of carbohydrate linkage they synthesize: β-galactoside α2,3-sialyltransferases (ST3Gal family), β-galactoside α2,6-sialyltransferases (ST6Gal family), N-acetylgalactosamine (GalNAc) α2,6-sialyltransferases (ST6GalNAc family), and α2,8-sialyltransferases (ST8Sia family). All animal sialyltransferases characterized to date have type II transmembrane topology and are thought to localize to the Golgi body. These sialyltransferases are classified into CAZy (carbohydrate-active enzymes) glycosyltransferase family 29 (Coutinho et al. 2003). All animal sialyltransferases have common structural features composed of a short N-terminal cytoplasmic tail, a transmembrane domain, a stem region, and a catalytic domain, which contains highly conserved motifs called sialylmotifs L (long), S (short), III (third position in the sequence), and VS (very short). The members of the ST6Gal family transfer sialic acid from CMP-sialic acid (CMP-Sia) to the galactose residues at the nonreducing ends of glycoconjugates through an α2,6-linkage. Two members of the ST6Gal family, ST6Gal-I and ST6Gal-II, have been identified in mammals to date. These enzymes commonly utilize the Galβ1–4GlcNAc structure on glycoproteins and oligosaccharides as acceptor substrates (Takashima et al. 2002, 2003; Krzewinski-Recchi et al. 2003); however, ST6Gal-II utilizes the LacdiNAc structure (GalNAcβ1–4GlcNAc) as a preferred acceptor substrate over the Galβ1–4GlcNAc structure (Rohfritsch et al. 2006; Laporte et al. 2009). The ST6Gal-I gene is ubiquitously expressed, whereas the ST6Gal-II gene is expressed in tissue- and stage-specific manner. The overall amino acid sequence identity of human ST6Gal-II is 48.9 % to human ST6Gal-I, 77.1 % to mouse ST6Gal-II, and 73.2 % to bovine ST6Gal-II, respectively. Analysis of the genomic structures of the ST6Gal-I and ST6Gal-II genes suggested that these genes arose from a common ancestral gene (Harduin-Lepers et al. 2005; Takashima 2008; Harduin-Lepers 2010).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Angata T, Varki A (2002) Chemical diversity in the sialic acids and related α-keto acids: an evolutionary perspective. Chem Rev 102:439–469. doi:10.1021/cr000407m

    Article  CAS  PubMed  Google Scholar 

  • Coutinho PM, Deleury E, Davies GJ, Henrissat B (2003) An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328:307–317. doi:10.1016/S0022-2836(03)00307-3

    Article  CAS  PubMed  Google Scholar 

  • Crocker PR, Paulson JC, Varki A (2007) Siglecs and their roles in the immune system. Nat Rev Immunol 7:255–266. doi:10.1038/nri2056

    Article  CAS  PubMed  Google Scholar 

  • Groux-Degroote S, Krzewinski-Recchi MA, Cazet A, Vincent A, Lehoux S, Lafitte JJ, Van Seuningen I, Delannoy P (2008) IL-6 and IL-8 increase the expression of glycosyltransferases and sulfotransferases involved in the biosynthesis of sialylated and/or sulfated LewisX epitopes in the human bronchial mucosa. Biochem J 410:213–223. doi:10.1042/BJ20070958

    Article  CAS  PubMed  Google Scholar 

  • Harduin-Lepers A (2010) Comprehensive analysis of sialyltransferases in vertebrate genomes. Glycobiol Insights 2:29–61

    Article  CAS  Google Scholar 

  • Harduin-Lepers A, Mollicone R, Delannoy P, Oriol R (2005) The animal sialyltransferases and sialyltransferase-related genes: a phylogenetic approach. Glycobiology 15:805–817. doi:10.1093/glycob/cwi063

    Article  CAS  PubMed  Google Scholar 

  • Ikeda M, Tomita Y, Mouri A, Koga M, Okochi T, Yoshimura R, Yamanouchi Y, Kinoshita Y, Hashimoto R, Williams HJ, Takeda M, Nakamura J, Nabeshima T, Owen MJ, O’Donovan MC, Honda H, Arinami T, Ozaki N, Iwata N (2010) Identification of novel candidate genes for treatment response to risperidone and susceptibility for schizophrenia: integrated analysis among pharmacogenomics, mouse expression, and genetic-case control association approaches. Biol Psychiatry 67:263–269. doi:10.1016/j.biopsych.2009.08.030

    Article  CAS  PubMed  Google Scholar 

  • Krzewinski-Recchi MA, Julien S, Juliant S, Teintenier-Lelièvre M, Samyn-Petit B, Montiel MD, Mir AM, Cerutti M, Harduin-Lepers A, Delannoy P (2003) Identification and functional expression of a second human β-galactoside α2,6-sialyltransferase, ST6Gal II. Eur J Biochem 270:950–961. doi:10.1046/j.1432-1033.2003.03458.x

    Article  CAS  PubMed  Google Scholar 

  • Laporte B, Gonzalez-Hilarion S, Maftah A, Petit JM (2009) The second bovine β-galactoside-α2,6-sialyltransferase (ST6Gal II): genomic organization and stimulation of its in vitro expression by IL-6 in bovine mammary epithelial cells. Glycobiology 19:1082–1093. doi:10.1093/glycob/cwp094

    Article  CAS  PubMed  Google Scholar 

  • Lehoux S, Groux-Degroote S, Cazet A, Dhaenens CM, Maurage CA, Caillet-Boudin ML, Delannoy P, Krzewinski-Recchi MA (2010) Transcriptional regulation of the human ST6GAL2 gene in cerebral cortex and neuronal cells. Glycoconj J 27:99–114. doi:10.1007/s10719-009-9260-y

    Article  CAS  PubMed  Google Scholar 

  • Nagase T, Nakayama M, Nakajima D, Kikuno R, Ohara O (2001) Prediction of the coding sequence of unidentified human genes. XX. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res 8:85–95. doi:10.1093/dnares/8.2.85

    Article  CAS  PubMed  Google Scholar 

  • Rohfritsch PF, Joosten JAF, Krzewinski-Recchi MA, Harduin-Lepers A, Laporte B, Juliant S, Cerutti M, Delannoy P, Vliegenthart JFG, Kamerling JP (2006) Probing the substrate specificity of four different sialyltransferases using synthetic β-D-Galp-(1→4)-β-GlcpNAc-(1→2)-α-D-Manp-(1→O)(CH2)7CH3 analogues. General activating effect of replacing N-acetylglucosamine by N-propionylglucosamine. Biochim Biophys Acta 1760:685–692. doi:10.1016/j.bbagen.2005.12.012

    Article  CAS  PubMed  Google Scholar 

  • Schwarzkopf M, Knobeloch KP, Rohde E, Hinderlich S, Wiechens N, Lucka L, Horak I, Reutter W, Horstkorte R (2002) Sialylation is essential for early development in mice. Proc Natl Acad Sci USA 99:5267–5270. doi:10.1073/pnas.072066199

    Article  CAS  PubMed  Google Scholar 

  • Takashima S (2008) Characterization of mouse sialyltransferase genes: their evolution and diversity. Biosci Biotechnol Biochem 72:1155–1167. doi:10.1271/bbb.80025

    Article  CAS  PubMed  Google Scholar 

  • Takashima S, Tsuji S (2011) Functional diversity of mammalian sialyltransferases. Trends Glycosci Glycotechnol 23:178–193. doi:10.4052/tigg.23.178

    Article  CAS  Google Scholar 

  • Takashima S, Tsuji S, Tsujimoto M (2002) Characterization of the second type of human β-galactoside α2,6-sialyltransferase (ST6Gal II), which sialylates Galβ1,4GlcNAc structures on oligosaccharides preferentially. J Biol Chem 277:45719–45728. doi:10.1074/jbc.M206808200

    Article  CAS  PubMed  Google Scholar 

  • Takashima S, Tsuji S, Tsujimoto M (2003) Comparison of the enzymatic properties of mouse β-galactoside α2,6-sialyltransferases, ST6Gal I and II. J Biochem 134:287–296. doi:10.1093/jb/mvg142

    Article  CAS  PubMed  Google Scholar 

  • Tsuji S, Datta AK, Paulson JC (1996) Systematic nomenclature for sialyltransferases. Glycobiology 6(7):v–vii

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shou Takashima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this entry

Cite this entry

Takashima, S., Tsuji, S. (2014). ST6 Beta-Galactoside Alpha-2,6-Sialyltranferase 2 (ST6GAL2). In: Taniguchi, N., Honke, K., Fukuda, M., Narimatsu, H., Yamaguchi, Y., Angata, T. (eds) Handbook of Glycosyltransferases and Related Genes. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54240-7_135

Download citation

Publish with us

Policies and ethics