Dermatan Sulfate Epimerases (DSE, DSEL)

  • Marco Maccarana
  • Anders Malmström
Reference work entry


Chondroitin/dermatan sulfate (CS/DS) chains are polysaccharides that are attached to approximately 30 different core proteins, thus giving rise to different CS/DS proteoglycans. The polysaccharide chain is composed of a repeating disaccharide unit [glucuronic (GlcA) or iduronic acid (IdoA) – N-acetyl-galactosamine (GalNAc)]n, where n varies in most cases between 20 and 100 (Fig. 83.1). Dermatan sulfate epimerase 1 and 2 epimerize glucuronic acid to iduronic acid (Maccarana et al. 2006; Pacheco et al. 2009c). This conversion in most cases is not quantitative, meaning that not all available glucuronic acids in a chain are converted. Therefore, a chain has a mixed content of glucuronic and iduronic acid. In the literature a single iduronic acid is sufficient to name the chain DS. To identify the hybrid nature of the GlcA/IdoA chain the term CS/DS is preferred. After epimerization of the chain, the C2 hydroxyl group of GlcA/IdoA and the C4 and/or C6 hydroxyl group of GalNAc can be sulfated, giving rise to seven different disaccharide structures (Kusche-Gullberg and Kjellen 2003). The combination of these disaccharides forms different protein-binding domains, which are generally 2–4 disaccharides long. It is evident that the structural variability of the chain makes CS/DS an informational rich molecule, and it has diverse biological functions (Trowbridge and Gallo 2002; Malmstrom et al. 2012). Iduronic acid in CS/DS is present in vertebrates, e.g., Xenopus (Yamada et al. 2009) and mammals, as well as in some invertebrate phyla of lower organisms such as Echinodermata, e.g., sea urchin and sea cucumber; Tunicata, e.g., ascidian; and Mollusca, e.g., squid (Yamada et al. 2011). It is absent in C. elegans and the fruit fly. DS-epi1 and 2 are expressed in vertebrates.


Hepatocyte Growth Factor Glucuronic Acid Dermatan Sulfate Tritiated Water Squamous Cell Carcinoma Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akatsu C, Mizumoto S, Kaneiwa T, Maccarana M, Malmstrom A, Yamada S, Sugahara K (2011) Dermatan sulfate epimerase 2 is the predominant isozyme in the formation of the chondroitin sulfate/dermatan sulfate hybrid structure in postnatal developing mouse brain. Glycobiology 21(5):565–574PubMedCrossRefGoogle Scholar
  2. Babu P, Victor XV, Nelsen E, Nguyen TK, Raman K, Kuberan B (2011) Hydrogen/deuterium exchange-LC-MS approach to characterize the action of heparan sulfate C5-epimerase. Anal Bioanal Chem 401(1):237–244PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bartolini B, Thelin MA, Rauch U, Feinstein R, Oldberg A, Malmstrom A, Maccarana M (2012) Mouse development is not obviously affected by the absence of dermatan sulfate epimerase 2 in spite of a modified brain dermatan sulfate composition. Glycobiology 22(7):1007–1016PubMedCrossRefGoogle Scholar
  4. Campbell P, Feingold DS, Jensen JW, Malmstrom A, Roden L (1983) New assay for uronosyl 5-epimerases. Anal Biochem 131(1):146–152PubMedCrossRefGoogle Scholar
  5. Deakin JA, Blaum BS, Gallagher JT, Uhrin D, Lyon M (2009) The binding properties of minimal oligosaccharides reveal a common heparan sulfate/dermatan sulfate-binding site in hepatocyte growth factor/scatter factor that can accommodate a wide variety of sulfation patterns. J Biol Chem 284(10):6311–6321PubMedCrossRefGoogle Scholar
  6. Dundar M, Muller T, Zhang Q, Pan J, Steinmann B, Vodopiutz J, Gruber R, Sonoda T, Krabichler B, Utermann G, Baenziger JU, Zhang L, Janecke AR (2009) Loss of dermatan-4-sulfotransferase 1 function results in adducted thumb-clubfoot syndrome. Am J Hum Genet 85(6):873–882PubMedCentralPubMedCrossRefGoogle Scholar
  7. Goossens D, Van Gestel S, Claes S, De Rijk P, Souery D, Massat I, Van den Bossche D, Backhovens H, Mendlewicz J, Van Broeckhoven C, Del-Favero J (2003) A novel CpG-associated brain-expressed candidate gene for chromosome 18q-linked bipolar disorder. Mol Psychiatry 8(1):83–89PubMedCrossRefGoogle Scholar
  8. Handel TM, Johnson Z, Crown SE, Lau EK, Proudfoot AE (2005) Regulation of protein function by glycosaminoglycans – as exemplified by chemokines. Annu Rev Biochem 74:385–410PubMedCrossRefGoogle Scholar
  9. Hannesson HH, Hagner-McWhirter A, Tiedemann K, Lindahl U, Malmstrom A (1996) Biosynthesis of dermatan sulphate. Defructosylated Escherichia coli K4 capsular polysaccharide as a substrate for the d-glucuronyl C-5 epimerase, and an indication of a two-base reaction mechanism. Biochem J 313(Pt 2):589–596PubMedGoogle Scholar
  10. Kusche-Gullberg M, Kjellen L (2003) Sulfotransferases in glycosaminoglycan biosynthesis. Curr Opin Struct Biol 13(5):605–611PubMedCrossRefGoogle Scholar
  11. Li F, Yamada S, Basappa, Shetty AK, Sugiura M, Sugahara K (2008) Determination of iduronic acid and glucuronic acid in sulfated chondroitin/dermatan hybrid chains by (1)H-nuclear magnetic resonance spectroscopy. Glycoconj J 25(7):603–610PubMedCrossRefGoogle Scholar
  12. Li F, Nandini CD, Hattori T, Bao X, Murayama D, Nakamura T, Fukushima N, Sugahara K (2010) Structure of pleiotrophin- and hepatocyte growth factor-binding sulfated hexasaccharide determined by biochemical and computational approaches. J Biol Chem 285(36):27673–27685PubMedCrossRefGoogle Scholar
  13. Linhardt RJ, Avci FY, Toida T, Kim YS, Cygler M (2006) CS lyases: structure, activity, and applications in analysis and the treatment of diseases. Adv Pharmacol 53:187–215PubMedCrossRefGoogle Scholar
  14. Maccarana M, Olander B, Malmstrom J, Tiedemann K, Aebersold R, Lindahl U, Li JP, Malmstrom A (2006) Biosynthesis of dermatan sulfate: chondroitin-glucuronate C5-epimerase is identical to SART2. J Biol Chem 281(17):11560–11568PubMedCrossRefGoogle Scholar
  15. Maccarana M, Kalamajski S, Kongsgaard M, Magnusson SP, Oldberg A, Malmstrom A (2009) Dermatan sulfate epimerase 1-deficient mice have reduced content and changed distribution of iduronic acids in dermatan sulfate and an altered collagen structure in skin. Mol Cell Biol 29(20):5517–5528PubMedCentralPubMedCrossRefGoogle Scholar
  16. Maimone MM, Tollefsen DM (1990) Structure of a dermatan sulfate hexasaccharide that binds to heparin cofactor II with high affinity. J Biol Chem 265(30):18263–18271PubMedGoogle Scholar
  17. Malfait F, Syx D, Vlummens P, Symoens S, Nampoothiri S, Hermanns-Le T, Van Laer L, De Paepe A (2010) Musculocontractural Ehlers-Danlos Syndrome (former EDS type VIB) and adducted thumb clubfoot syndrome (ATCS) represent a single clinical entity caused by mutations in the dermatan-4-sulfotransferase 1 encoding CHST14 gene. Hum Mutat 31(11):1233–1239PubMedCrossRefGoogle Scholar
  18. Malmstrom A (1984) Biosynthesis of dermatan sulfate. II. Substrate specificity of the C-5 uronosyl epimerase. J Biol Chem 259(1):161–165PubMedGoogle Scholar
  19. Malmstrom A, Aberg L (1982) Biosynthesis of dermatan sulphate. Assay and properties of the uronosyl C-5 epimerase. Biochem J 201(3):489–493PubMedGoogle Scholar
  20. Malmstrom A, Bartolini B, Thelin MA, Pacheco B, Maccarana M (2012) Iduronic acid in chondroitin/dermatan sulfate: biosynthesis and biological function. J Histochem Cytochem 60(12):916–925CrossRefGoogle Scholar
  21. Mikami T, Mizumoto S, Kago N, Kitagawa H, Sugahara K (2003) Specificities of three distinct human chondroitin/dermatan N-acetylgalactosamine 4-O-sulfotransferases demonstrated using partially desulfated dermatan sulfate as an acceptor: implication of differential roles in dermatan sulfate biosynthesis. J Biol Chem 278(38):36115–36127PubMedCrossRefGoogle Scholar
  22. Miller MJ, Costello CE, Malmstrom A, Zaia J (2006) A tandem mass spectrometric approach to determination of chondroitin/dermatan sulfate oligosaccharide glycoforms. Glycobiology 16(6):502–513PubMedCentralPubMedCrossRefGoogle Scholar
  23. Miyake N, Kosho T, Mizumoto S, Furuichi T, Hatamochi A, Nagashima Y, Arai E, Takahashi K, Kawamura R, Wakui K, Takahashi J, Kato H, Yasui H, Ishida T, Ohashi H, Nishimura G, Shiina M, Saitsu H, Tsurusaki Y, Doi H, Fukushima Y, Ikegawa S, Yamada S, Sugahara K, Matsumoto N (2010) Loss-of-function mutations of CHST14 in a new type of Ehlers-Danlos syndrome. Hum Mutat 31(8):966–974PubMedCrossRefGoogle Scholar
  24. Mizukoshi E, Nakamoto Y, Arai K, Yamashita T, Sakai A, Sakai Y, Kagaya T, Honda M, Kaneko S (2011) Comparative analysis of various tumor-associated antigen-specific t-cell responses in patients with hepatocellular carcinoma. Hepatology 53(4):1206–1216PubMedCrossRefGoogle Scholar
  25. Nakao M, Shichijo S, Imaizumi T, Inoue Y, Matsunaga K, Yamada A, Kikuchi M, Tsuda N, Ohta K, Takamori S, Yamana H, Fujita H, Itoh K (2000) Identification of a gene coding for a new squamous cell carcinoma antigen recognized by the CTL. J Immunol 164(5):2565–2574PubMedGoogle Scholar
  26. Noguchi M, Kobayashi K, Suetsugu N, Tomiyasu K, Suekane S, Yamada A, Itoh K, Noda S (2003) Induction of cellular and humoral immune responses to tumor cells and peptides in HLA-A24 positive hormone-refractory prostate cancer patients by peptide vaccination. Prostate 57(1):80–92PubMedCrossRefGoogle Scholar
  27. Pacheco B, Maccarana M, Goodlett DR, Malmstrom A, Malmstrom L (2009a) Identification of the active site of DS-epimerase 1 and requirement of N-glycosylation for enzyme function. J Biol Chem 284(3):1741–1747PubMedCrossRefGoogle Scholar
  28. Pacheco B, Maccarana M, Malmstrom A (2009b) Dermatan 4-O-sulfotransferase 1 is pivotal in the formation of iduronic acid blocks in dermatan sulfate. Glycobiology 19(11):1197–1203PubMedCrossRefGoogle Scholar
  29. Pacheco B, Malmstrom A, Maccarana M (2009c) Two dermatan sulfate epimerases form iduronic acid domains in dermatan sulfate. J Biol Chem 284(15):9788–9795PubMedCrossRefGoogle Scholar
  30. Rho JH, Zhang W, Murali M, Roehrl MH, Wang JY (2011) Human proteins with affinity for dermatan sulfate have the propensity to become autoantigens. Am J Pathol 178(5):2177–2190PubMedCrossRefGoogle Scholar
  31. Shimizu K, Okamoto N, Miyake N, Taira K, Sato Y, Matsuda K, Akimaru N, Ohashi H, Wakui K, Fukushima Y, Matsumoto N, Kosho T (2011) Delineation of dermatan 4-O-sulfotransferase 1 deficient Ehlers-Danlos syndrome: observation of two additional patients and comprehensive review of 20 reported patients. Am J Med Genet A 155A(8):1949–1958PubMedCrossRefGoogle Scholar
  32. Sugahara K, Mikami T (2007) Chondroitin/dermatan sulfate in the central nervous system. Curr Opin Struct Biol 17(5):536–545PubMedCrossRefGoogle Scholar
  33. Taylor KR, Gallo RL (2006) Glycosaminoglycans and their proteoglycans: host-associated molecular patterns for initiation and modulation of inflammation. FASEB J 20(1):9–22PubMedCrossRefGoogle Scholar
  34. Taylor KR, Rudisill JA, Gallo RL (2005) Structural and sequence motifs in dermatan sulfate for promoting fibroblast growth factor-2 (FGF-2) and FGF-7 activity. J Biol Chem 280(7):5300–5306PubMedCrossRefGoogle Scholar
  35. Terasaki M, Shibui S, Narita Y, Fujimaki T, Aoki T, Kajiwara K, Sawamura Y, Kurisu K, Mineta T, Yamada A, Itoh K (2011) Phase I trial of a personalized peptide vaccine for patients positive for human leukocyte antigen–A24 with recurrent or progressive glioblastoma multiforme. J Clin Oncol 29(3):337–344PubMedCrossRefGoogle Scholar
  36. Thelin MA, Svensson KJ, Shi X, Bagher M, Axelsson J, Isinger-Ekstrand A, van Kuppevelt TH, Johansson J, Nilbert M, Zaia J, Belting M, Maccarana M, Malmstrom A (2012) Dermatan sulfate is involved in the tumorigenic properties of esophagus squamous cell carcinoma. Cancer Res 72(8):1943–1952PubMedCentralPubMedCrossRefGoogle Scholar
  37. Tollefsen DM (2010) Vascular dermatan sulfate and heparin cofactor II. Prog Mol Biol Transl Sci 93:351–372PubMedCrossRefGoogle Scholar
  38. Trowbridge JM, Gallo RL (2002) Dermatan sulfate: new functions from an old glycosaminoglycan. Glycobiology 12(9):117R–125RPubMedCrossRefGoogle Scholar
  39. Voermans NC, Kempers M, Lammens M, van Alfen N, Janssen MC, Bonnemann C, van Engelen BG, Hamel BC (2012) Myopathy in a 20-year-old female patient with D4ST-1 deficient Ehlers-Danlos syndrome due to a homozygous CHST14 mutation. Am J Med Genet A 158A(4):850–855PubMedCrossRefGoogle Scholar
  40. Wang JY, Lee J, Yan M, Rho JH, Roehrl MH (2011) Dermatan sulfate interacts with dead cells and regulates CD5(+) B-cell fate: implications for a key role in autoimmunity. Am J Pathol 178(5):2168–2176PubMedCrossRefGoogle Scholar
  41. Yamada S, Sugahara K (2008) Potential therapeutic application of chondroitin sulfate/dermatan sulfate. Curr Drug Discov Technol 5(4):289–301PubMedCrossRefGoogle Scholar
  42. Yamada S, Onishi M, Fujinawa R, Tadokoro Y, Okabayashi K, Asashima M, Sugahara K (2009) Structural and functional changes of sulfated glycosaminoglycans in Xenopus laevis during embryogenesis. Glycobiology 19(5):488–498PubMedCrossRefGoogle Scholar
  43. Yamada S, Sugahara K, Ozbek S (2011) Evolution of glycosaminoglycans: comparative biochemical study. Commun Integr Biol 4(2):150–158PubMedCrossRefGoogle Scholar
  44. Yamauchi S, Kurosu A, Hitosugi M, Nagai T, Oohira A, Tokudome S (2011) Differential gene expression of multiple chondroitin sulfate modification enzymes among neural stem cells, neurons and astrocytes. Neurosci Lett 493(3):107–111PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Department of Experimental Medical ScienceLund UniversityLundSweden

Personalised recommendations