Dolichyl-Phosphate (UDP-N-Acetylglucosamine) N-Acetylglucosaminephospho transferase 1 (GlcNAc-1-P Transferase) (DPAGT1)

Reference work entry


In eukaryotes, N-linked protein glycosylation starts with the synthesis of a highly conserved lipid-linked oligosaccharide (LLO) on the endoplasmic reticulum (ER) membrane. As the committed process of N-glycosylation, 14 monosaccharide residues are sequentially transferred onto dolichyl pyrophosphate (dol-P) carrier molecule by a series of glycosyltransferases (GTase) to form the core oligosaccharide precursor Glc3Man9GlcNAc2-P-P-dol. The first half of GTase reactions in LLO synthesis takes place on the cytoplasmic face of ER (Fig. 124.1), which produces Man5GlcNAc2-P-P-dol intermediate from the soluble nucleotide sugar substrates uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) and guanosine diphosphate d-mannose (GDP-man). Once this intermediate is flipped into the lumen of the ER, the next seven sugars are added from dolichol-sugar substrates Man-P-dol and Glc-P-dol to complete the assembly. Another half of GTase catalyzes these reactions (reviewed in Helenius et al. 2004; Kelleher and Gilmore 2006; Weerapana and Imperiali 2006). DPAGT1 encodes dolichyl-phosphate (UDP-N-acetylglucosamine) N-acetylglucosaminephosphotransferase 1 that catalyzes the first reaction of LLO synthesis, by adding GlcNAc-1-P from cytoplasmic UDP-GlcNAc to dol-P. DPAGT1 is essential for N-linked protein glycosylation and considered to be a key regulator among the metabolic pathway of protein N-glycosylation (Lehrman 1991).


Endoplasmic Reticulum Endoplasmic Reticulum Membrane Monosaccharide Residue Cytoplasmic Face Congenital Myasthenic Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Barnes G, Hansen WJ, Holcomb CL, Rine J (1984) Asparagine-linked glycosylation in Saccharomyces cerevisiae: genetic analysis of an early step. Mol Cell Biol 4:2381–2388PubMedCentralPubMedGoogle Scholar
  2. Belaya K, Finlayson S, Slater CR, Cossins J, Liu WW, Maxwell S, McGowan SJ, Maslau S, Twigg SR, Walls TJ, Pascual Pascual SI, Palace J, Beeson D (2012) Mutations in DPAGT1 cause a limb-girdle congenital myasthenic syndrome with tubular aggregates. Am J Hum Genet 91(1):193–201PubMedCentralPubMedGoogle Scholar
  3. Bretthauer RK (2009) Structure, expression, and regulation of UDP-GlcNAc: dolichol phosphate GlcNAc-1-phosphate transferase (DPAGT1). Curr Drug Targets 10(6):477–482PubMedCrossRefGoogle Scholar
  4. Carrera IA, Matthijs G, Perez B, Cerdá CP (2012) DPAGT1-CDG: report of a patient with fetal hypokinesia phenotype. Am J Med Genet A 158A(8):2027–2030PubMedCrossRefGoogle Scholar
  5. Dan N, Middleton RB, Lehrman MA (1996) Hamster UDP-N-acetylglucosamine: dolichol-P N-acetylglucosamine-1-P transferase has multiple transmembrane spans and a critical cytosolic loop. J Biol Chem 271:30717–30724PubMedCrossRefGoogle Scholar
  6. Dan N, Lehrman MA (1997) Oligomerization of hamster UDP-GlcNAc:dolichol-P GlcNAc-1-P transferase, an enzyme with multiple transmembrane spans. J Biol Chem 272:14214–14219PubMedCrossRefGoogle Scholar
  7. Eckert V, Blank M, Mazhari-Tabrizi R, Mumberg D, Funk M, Schwarz RT (1998) Cloning and functional expression of the human GlcNAc-1-P transferase, the enzyme for the committed step of the dolichol cycle, by heterologous complementation in Saccharomyces cerevisiae. Glycobiology 8(1):77–85PubMedGoogle Scholar
  8. Engel AG, Shen XM, Selcen D, Sine S (2012) New horizons for congenital myasthenic syndromes. Ann N Y Acad Sci 1275:54–62. doi: 10.1111/j.1749-6632.2012.06803.xGoogle Scholar
  9. Freeze HH (2006) Genetic defects in the human glycome. Nat Rev Genet 7(7):537–551PubMedCrossRefGoogle Scholar
  10. Heifetz A, Elbein AD (1977) Solubilization and properties of mannose and N-acetylglucosamine transferase involved in formation of polyprenyl-sugar intermediates. J Biol Chem 252(9):3057–3063Google Scholar
  11. Helenius A, Aebi M (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73:1019–1049Google Scholar
  12. Jamal B, Sengupta PK, Gao ZN, Nita-Lazar M, Amin B, Jalisi S, Bouchie MP, Kukuruzinska MA (2012) Aberrant amplification of the crosstalk between canonical Wnt signaling and N-glycosylation gene DPAGT1 promotes oral cancer. Oral Oncol 48(6):523–529PubMedCentralPubMedCrossRefGoogle Scholar
  13. Kaushal GP, Elbein AD (1985) Purification and properties of UDPGlcNAc: dolichyl-phosphate GlcNAc-1-phosphate transferase. Activation and inhibition of the enzyme. J Biol Chem 260:16303–16309PubMedGoogle Scholar
  14. Kean EL (1983) Influence of metal ions on the biosynthesis of /V-acerylglucosaminyl polyprenols by the retina. Biochim Biophys Acta 750:268–273PubMedCrossRefGoogle Scholar
  15. Kean EL (1985) Stimulation by dolichol phosphate-mannose and phospholipids of the biosynthesis of N-acetylglucosaminlypyrophosphoryldolichol. J Biol Chem 260:12561–12571PubMedGoogle Scholar
  16. Kean EL, Wei Z, Anderson VE, Zhang N, Sayre LM (1999) Regulation of the biosynthesis of N-acetylglucosaminlypyrophosphoryldolichol, feedback and product inhibition. J Biol Chem 274:34072–34082PubMedCrossRefGoogle Scholar
  17. Kelleher DJ, Gilmore R (2006) An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology 16(4):47R–62R, ReviewPubMedCrossRefGoogle Scholar
  18. Lehrman MA (1991) Biosynthesis of N-acetylglucosamine-P-P-dolichol, the committed step of asparagine-linked oligosaccharide assembly. Glycobiology 1:553–562PubMedCrossRefGoogle Scholar
  19. Liu X, Chang K-P (1992) The 63-kilobase circular amplicon of tunicamycin-resistant Leishmania amazonensis contains a functional N-acetylglucosamine-1-phosphate transferase gene that can be used as a dominant selectable marker in transfection. Mol Cell Biol 12:4112–4122PubMedCentralPubMedGoogle Scholar
  20. Marek KW, Vijay IK, Marth JD (1999) A recessive deletion in the GlcNAc-1-phosphotransferase gene results in peri-implantation embryonic lethality. Glycobiology 9(11):1263–1271PubMedCrossRefGoogle Scholar
  21. Nita-Lazar M, Noonan V, Rebustini I, Walker J, Menko AS, Kukuruzinska MA (2009) Overexpression of DPAGT1 leads to aberrant N-glycosylation of E-cadherin and cellular discohesion in oral cancer. Cancer Res 69(14):5673–5680PubMedCentralPubMedCrossRefGoogle Scholar
  22. Noffz C, Keppler-Ross S, Dean N (2009) Hetero-oligomeric interactions between early glycosyltransferases of the dolichol cycle. Glycobiology 19:472–478PubMedCrossRefGoogle Scholar
  23. Plouhar PL, Bretthauer RK (1982) A phospholipid requirement for dolichol pyrophosphate N-acetylglucosamine synthesis in phospholipase A2-treated rat lung microsomes. J Biol Chem 257:8907–8911PubMedGoogle Scholar
  24. Rajput B, Ma J, Munipappa N, Schantz L, Naylor SL, Lalley PA, Vijay IK (1992) Mouse UDP-GlcNAc: dolichyl-phosphate N-acetylglucosaminephosphotransferase. Molecular cloning of the cDNA, generation of anti-peptide antibodies and chromosomal location. Biochem J 285:985–992PubMedGoogle Scholar
  25. Rine J, Hansen W, Hardeman E, Davis RW (1983) Targeted selection of recombinant clones through gene dosage effects. Proc Natl Acad Sci USA 80:6750–6754PubMedCentralPubMedCrossRefGoogle Scholar
  26. Sengupta PK, Bouchie MP, Kukuruzinska MA (2010) N-glycosylation gene DPAGT1 is a target of the Wnt/beta-catenin signaling pathway. J Biol Chem 285(41):31164–31173PubMedCrossRefGoogle Scholar
  27. Shailubhai K, Dong-Yu B, Saxena ES, Vijay IK (1988) Purification and characterization of UDP-N-acetylglucosamine: dolichol phosphate N-acetyl-d-glucosamine-1-phosphate transferase involved in the biosynthesis of asparagine-linked glycoproteins in the mammary gland. J Biol Chem 263:15964–15972PubMedGoogle Scholar
  28. Timal S, Hoischen A, Lehle L, Adamowicz M, Huijben K, Sykut-Cegielska J, Paprocka J, Jamroz E, Spronsen FJV, Körner C, Gilissen C, Rodenburg RJ, Eidhof I, Heuvel LVD, Thiel C, Wevers RA, Morava E, Veltman J, Lefeber DJ (2012) Gene identification in the congenital disorders of glycosylation type I by whole-exome sequencing. Hum Mol Genet 21:4151–4161PubMedCrossRefGoogle Scholar
  29. Weerapana E, Imperiali B (2006) Asparagine-linked protein glycosylation: from eukaryotic to prokaryotic systems. Glycobiology 16(6):91R–101R, ReviewPubMedCrossRefGoogle Scholar
  30. Würde AE, Reunert J, Rust S, Hertzberg C, Haverkämper S, Nürnberg G, Nürnberg P, Lehle L, Rossi R, Marquardt T (2012) Congenital disorder of glycosylation type Ij (CDG-Ij, DPAGT1-CDG): extending the clinical and molecular spectrum of a rare disease. Mol Genet Metab 105(4):634–641PubMedCrossRefGoogle Scholar
  31. Wu X, Rush JS, Karaoglu D, Krasnewish D, Lubinsky MS, Waechter CJ et al (2003) Deficiency of UDP-GlcNAc: dolichol phosphate N-acetylglucosamine-1 phosphate transferase (DPAGT1) causes a novel congenital disorder of glycosylation type Ij. Hum Mutat 22:144–150PubMedCrossRefGoogle Scholar
  32. Zhu X, Lehrman MA (1990) Cloning, sequence, and expression of a cDNA encoding hamster UDP-GlcNAc: dolichol phosphate N-acetylglucosamine-1-phosphate transferase. J Biol Chem 265:14250–14255PubMedGoogle Scholar
  33. Zou J, Scocca JR, Krag SS (1995) Asparagine-linked glycosylation in Schizosaccharomyces pombe: functional conservation of the first step in oligosaccharide-lipid assembly. Arch Biochem Biophys 317:487–496PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Department of Biochemistry and Cell BiologyStony Brook UniversityStony BrookUSA
  2. 2.The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiChina

Personalised recommendations