Advertisement

Beta1,4-N-Acetylgalactosaminyltransferase-3 (B4GALNT3) and Beta1,4-N-Acetylgalactosaminyltransferase-4 (B4GALNT4)

  • Jacques U. Baenziger
Reference work entry

Abstract

N- and O-glycans terminating with GalNAcβ1-4GlcNAcβ (LacdiNAc) occur on a number of glycoproteins including lutropin (LH) (Green et al. 1985), thyrotropin (TSH) (Baenziger and Green 1991), prolactin-like proteins (Manzella et al. 1997), glycodelin (Dell et al. 1995), tissue factor pathway inhibitor (Smith et al. 1992), carbonic anhydrase 6 (Hooper et al. 1995), SorLA/LR11 (Fiete et al. 2007), zona pellucida 3 (Dell et al. 2003), and extracellular matrix glycoproteins (Breloy et al. 2012). The β1,4-linked GalNAc can be further modified with a variety of moieties: 4-linked SO4 (Baenziger and Green 1991) and α2,6-linked N-acetylneuraminic acid (NANA) (Stockell Hartree and Renwick 1992), or the subterminal GlcNAc can be modified with α1,3-linked fucose to form GalNAcβ1,4(Fucα1,3)GlcNAcβ (Dell et al. 1995) or in the case of core 2 O-linked structures with PO4 (Breloy et al. 2012). Each of these structures is unique by virtue of the presence of the β1,4-linked GalNAc rather than the more common β1,4-linked Gal. The presence of LacdiNAc on the N-glycans of LH, TSH, and the free glycoprotein hormone α-subunit and its absence on N-glycans of follitropin (FSH) and other glycoproteins synthesized in the pituitary led to the hypothesis that the β1,4-N-acetylgalactosaminyltransferase (β4GalNAc-T) responsible for the synthesis of these structures is protein specific (Baenziger and Green 1988). A β4GalNAc-T with the predicted protein specificity was demonstrated in pituitary extracts (Smith and Baenziger 1988), and key residues essential for the recognition of the glycoprotein hormones were identified (Mengeling et al. 1995). Two β1,4-N-acetylgalactosaminyltransferases, β4GalNAc-T3 (Sato et al. 2003) and β4GalNAc-T4 (Gotoh et al. 2004) were cloned and shown to transfer GalNAc to β-linked GlcNAc to form LacdiNAc-containing structures on N- and O-linked glycans such as those shown in Fig. 40.1. β4GalNAc-T3 and β4GalNAc-T4 recognize peptide sequences that result in protein-specific modification of N- and O-glycans (Fiete et al. 2012a, b; Miller et al. 2008) and display the specificity predicted for the β4GalNAc-T activity responsible for the modification of the LH N-glycans. β4GalNAc-T3 and β4GalNAc-T4 transcripts are present in a number of tissues, suggesting that other glycoproteins will be specifically modified with glycans containing LacdiNAc and that as with the glycoprotein hormones the presence of LacdiNAc will be of biologic importance for the function of these glycoproteins.

Keywords

Carbonic Anhydrase Tissue Factor Pathway Inhibitor Glycoprotein Hormone Recognition Determinant Extracellular Matrix Glycoprotein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Baenziger JU, Green ED (1988) Pituitary glycoprotein hormone oligosaccharides: structure, synthesis and function of the asparagine-linked oligosaccharides on lutropin, follitropin and thyrotropin. Biochim Biophys Acta 947:287–306PubMedCrossRefGoogle Scholar
  2. Baenziger JU, Green ED (1991) Structure, synthesis, and function of the asparagine-linked oligosaccharides on pituitary glycoprotein hormones. In: Ginsberg V, Robbins PW (eds) Biology of carbohydrates, vol. 3. JAI Press Ltd, London, pp 1–46Google Scholar
  3. Baenziger JU, Kumar S, Brodbeck RM, Smith PL, Beranek MC (1992) Circulatory half-life but not interaction with the lutropin/chorionic gonadotropin receptor is modulated by sulfation of bovine lutropin oligosaccharides. Proc Natl Acad Sci USA 89:334–338PubMedCrossRefGoogle Scholar
  4. Breloy I, Pacharra S, Ottis P, Bonar D, Grahn A, Hanisch FG (2012) O-linked N, N'-diacetyllactosamine (LacdiNAc)-modified glycans in extracellular matrix glycoproteins are specifically phosphorylated at subterminal N-acetylglucosamine. J Biol Chem 287:18275–18286PubMedCrossRefGoogle Scholar
  5. Dell A, Morris HR, Easton RL, Panico M, Patankar M, Oehniger S, Koistinen R, Koistinen H, Seppala M, Clark GF (1995) Structural analysis of the oligosaccharides derived from glycodelin, a human glycoprotein with potent immunosuppressive and contraceptive activities. J Biol Chem 270:24116–24126PubMedCrossRefGoogle Scholar
  6. Dell A, Chalabi S, Easton RL, Haslam SM, Sutton-Smith M, Patankar MS, Lattanzio F, Panico M, Morris HR, Clark GF (2003) Murine and human zona pellucida 3 derived from mouse eggs express identical O-glycans. Proc Natl Acad Sci USA 100:15631–15636PubMedCrossRefGoogle Scholar
  7. Dharmesh SM, Skelton TP, Baenziger JU (1993) Co-ordinate and restricted expression of the ProXaaArg/Lys-specific GalNAc-transferase and the GalNAc beta 1,4GlcNAc beta 1,2Man alpha-4-sulfotransferase. J Biol Chem 268:17096–17102PubMedGoogle Scholar
  8. Do KY, Do SI, Cummings RD (1997) Differential expression of LacdiNAc sequences (GalNAc beta 1-4GlcNAc-R) in glycoproteins synthesized by Chinese hamster ovary and human 293 cells. Glycobiology 7:183–194PubMedCrossRefGoogle Scholar
  9. Fiete D, Srivastava V, Hindsgaul O, Baenziger JU (1991) A hepatic reticuloendothelial cell receptor specific for SO4-4GalNAc beta 1,4GlcNAc beta 1,2Man alpha that mediates rapid clearance of lutropin. Cell 67:1103–1110PubMedCrossRefGoogle Scholar
  10. Fiete D, Mi Y, Oats EL, Beranek MC, Baenziger JU (2007) N-linked oligosaccharides on the low density lipoprotein receptor homolog SorLA/LR11 are modified with terminal GalNAc-4-SO4 in kidney and brain. J Biol Chem 282:1873–1881PubMedCrossRefGoogle Scholar
  11. Fiete D, Beranek M, Baenziger JU (2012a) Molecular Basis for protein-specific transfer of N-acetylgalactosamine to N-linked glycans by the glycosyltransferases β4GalNAc-T3 and β4GalNAc-T4. J Biol Chem 287:29194–29203PubMedCrossRefGoogle Scholar
  12. Fiete D, Beranek M, Baenziger JU (2012b) Peptide-specific transfer of N-acetylgalactosamine to O-linked glycans by the glycosyltransferases β4GalNAc-T3 and β4GalNAc-T4. J Biol Chem 287:29204–29212PubMedCrossRefGoogle Scholar
  13. Gotoh M, Sato T, Kiyohara K, Kameyama A, Kikuchi N, Kwon YD, Ishizuka Y, Iwai T, Nakanishi H, Narimatsu H (2004) Molecular cloning and characterization of beta1,4-N-acetylgalactosaminyltransferases IV synthesizing N,N'-diacetyllactosediamine. FEBS Lett 562:134–140PubMedCrossRefGoogle Scholar
  14. Green ED, van Halbeek H, Boime I, Baenziger JU (1985) Structural elucidation of the disulfated oligosaccharide from bovine lutropin. J Biol Chem 260:15623–15630PubMedGoogle Scholar
  15. Hooper LV, Beranek MC, Manzella SM, Baenziger JU (1995) Differential expression of GalNAc-4-sulfotransferase and GalNAc-transferase results in distinct glycoforms of carbonic anhydrase VI in parotid and submaxillary glands. J Biol Chem 270:5985–5993PubMedCrossRefGoogle Scholar
  16. Hsu WM, Che MI, Liao YF, Chang HH, Chen CH, Huang YM, Jeng YM, Huang J, Quon MJ, Lee H, Huang HC, Huang MC (2011) B4GALNT3 expression predicts a favorable prognosis and suppresses cell migration and invasion via beta(1) integrin signaling in neuroblastoma. Am J Pathol 179:1394–1404PubMedCrossRefGoogle Scholar
  17. Huang J, Liang JT, Huang HC, Shen TL, Chen HY, Lin NY, Che MI, Lin WC, Huang MC (2007) Beta1,4-N-acetylgalactosaminyltransferase III enhances malignant phenotypes of colon cancer cells. Mol Cancer Res 5:543–552PubMedCrossRefGoogle Scholar
  18. Ikehara Y, Sato T, Niwa T, Nakamura S, Gotoh M, Ikehara SK, Kiyohara K, Aoki C, Iwai T, Nakanishi H, Hirabayashi J, Tatematsu M, Narimatsu H (2006) Apical Golgi localization of N, N'-diacetyllactosediamine synthase, beta4GalNAc-T3, is responsible for LacdiNAc expression on gastric mucosa. Glycobiology 16:777–785PubMedCrossRefGoogle Scholar
  19. Kawar ZS, Van Die I, Cummings RD (2002) Molecular cloning and enzymatic characterization of a UDP-GalNAc:GlcNAc(beta)-R beta1,4-N-acetylgalactosaminyltransferase from Caenorhabditis elegans. J Biol Chem 277:34924–34932PubMedCrossRefGoogle Scholar
  20. Kawar ZS, Haslam SM, Morris HR, Dell A, Cummings RD (2005) Novel poly-GalNAcbeta1-4GlcNAc (LacdiNAc) and fucosylated poly-LacdiNAc N-glycans from mammalian cells expressing beta1,4-N-acetylgalactosaminyltransferase and alpha1,3-fucosyltransferase. J Biol Chem 280:12810–12819PubMedCrossRefGoogle Scholar
  21. Manzella SM, Dharmesh SM, Cohick CB, Soares MJ, Baenziger JU (1997) Developmental regulation of a pregnancy-specific oligosaccharide structure, NeuAcalpha2,6GalNAcbeta1,4GlcNAc, on select members of the rat placental prolactin family. J Biol Chem 272:4775–4782PubMedCrossRefGoogle Scholar
  22. Mengeling BJ, Manzella SM, Baenziger JU (1995) A cluster of basic amino acids within an alpha-helix is essential for alpha-subunit recognition by the glycoprotein hormone N-acetylgalactosaminyltransferase. Proc Natl Acad Sci USA 92:502–506PubMedCrossRefGoogle Scholar
  23. Mi Y, Fiete D, Baenziger JU (2008) Ablation of GalNAc-4-sulfotransferase-1 enhances reproduction by altering the carbohydrate structures of luteinizing hormone in mice. J Clin Invest 118:1815–1824PubMedCentralPubMedCrossRefGoogle Scholar
  24. Miller E, Fiete D, Blake NM, Beranek M, Oates EL, Mi Y, Roseman DS, Baenziger JU (2008) A necessary and sufficient determinant for protein-selective glycosylation in vivo. J Biol Chem 283:1985–1991PubMedCrossRefGoogle Scholar
  25. Morris HR, Dell A, Easton RL, Panico M, Koistinen H, Koistinen R, Oehninger S, Patankar MS, Seppala M, Clark GF (1996) Gender-specific glycosylation of human glycodelin affects its contraceptive activity. J Biol Chem 271:32159–32167PubMedCrossRefGoogle Scholar
  26. Rigden DJ, Mello LV, Galperin MY (2004) The PA14 domain, a conserved all-beta domain in bacterial toxins, enzymes, adhesins and signaling molecules. Trends Biochem Sci 29:335–339PubMedCrossRefGoogle Scholar
  27. Sato T, Gotoh M, Kiyohara K, Kameyama A, Kubota T, Kikuchi N, Ishizuka Y, Iwasaki H, Togayachi A, Kudo T, Ohkura T, Nakanishi H, Narimatsu H (2003) Molecular cloning and characterization of a novel human beta 1,4-N-acetylgalactosaminyltransferase, beta 4GalNAc-T3, responsible for the synthesis of N,N′-diacetyllactosediamine, galNAc beta 1–4GlcNAc. J Biol Chem 278:47534–47544PubMedCrossRefGoogle Scholar
  28. Smith PL, Baenziger JU (1988) A pituitary N-acetylgalactosamine transferase that specifically recognizes glycoprotein hormones. Science 242:930–933PubMedCrossRefGoogle Scholar
  29. Smith PL, Baenziger JU (1990) Recognition by the glycoprotein hormone-specific N-acetylgalactosaminetransferase is independent of hormone native conformation. Proc Natl Acad Sci USA 87:7275–7279PubMedCrossRefGoogle Scholar
  30. Smith PL, Baenziger JU (1992) Molecular basis of recognition by the glycoprotein hormone-specific N-acetylgalactosamine-transferase. Proc Natl Acad Sci USA 89:329–333PubMedCrossRefGoogle Scholar
  31. Smith PL, Skelton TP, Fiete D, Dharmesh SM, Beranek MC, MacPhail L, Broze GJ Jr, Baenziger JU (1992) The asparagine-linked oligosaccharides on tissue factor pathway inhibitor terminate with SO4-4GalNAc beta 1, 4GlcNAc beta 1,2 Mana alpha. J Biol Chem 267:19140–19146PubMedGoogle Scholar
  32. Stockell Hartree A, Renwick AGC (1992) Molecular structures of glycoprotein hormones and functions of their carbohydrate components. Biochem J 287:665–679PubMedGoogle Scholar
  33. Van den Eijnden DH, Neeleman AP, Van der Knaap WP, Bakker H, Agterberg M, Van Die I (1995) Novel glycosylation routes for glycoproteins: the lacdiNAc pathway. Biochem Soc Trans 23:175–179 [Review] [49 refs]PubMedGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Biology and Biomedical SciencesWashington University in St. LouisSt. LouisUSA

Personalised recommendations