Advertisement

ST8 Alpha-N-Acetyl-Neuraminide Alpha-2,8-Sialyltransferase 1 (ST8SIA1)

  • Marie Bobowski
  • Anne Harduin-Lepers
  • Philippe Delannoy
Reference work entry

Abstract

The CMP–sialic acid: sialylα2-3Galβ1-4Glcβ1-O-Cer α2,8-sialyltransferase (ST8Sia I) is the key enzyme for the biosynthesis of b-series gangliosides. ST8Sia I catalyses the transfer of a sialic acid residue from CMP–sialic acid onto GM3 (Neu5Acα2-3Galβ1-4Glcβ1-O-Cer) to form GD3 (Neu5Acα2-8Neu5Acα2-3Galβ1-4Glcβ1-O-Cer). The product GD3 can be converted to GT3, and both compounds can be elongated by other monosaccharides (i.e., GalNAc, Gal, and sialic acid) to form the b- and c-series gangliosides. Gangliosides from b- and c-series are essentially found in developing tissues during embryogenesis, and mainly restricted to the nervous system in healthy adults (Yamashita et al. 1999). They are enriched in glycolipid-enriched microdomains where they play a key role in the modulation of signal transduction (Todeschini et al. 2008). Moreover, substantial evidences have demonstrated the implication of ST8Sia I and b- and c-series gangliosides in oncogenesis by mediating cell proliferation, migration, tumor growth, and angiogenesis (Bobowski et al. 2012).

Keywords

Sialic Acid Sialic Acid Residue Mediate Cell Proliferation Complex Ganglioside Tumor Associate Carbohydrate Antigen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ariga T, McDonald MP, Yu RK (2008) Role of ganglioside metabolism in the pathogenesis of Alzheimer’s disease – a review. J Lipid Res 49:1157–1175. doi:10.1194/jlr.R800007-JLR200PubMedCrossRefGoogle Scholar
  2. Battula VL, Shi Y, Evans KW, Wang RY, Spaeth EL, Jacamo RO, Guerra R, Sahin AA, Marini FC, Hortobagyi G, Mani SA, Andreeff M (2012) Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis. J Clin Invest 122:2066–2078. doi:10.1172/JCI59735PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bernardo A, Harrison FE, McCord M, Zhao J, Bruchey A, Davies SS, Jackson Roberts L 2nd, Mathews PM, Matsuoka Y, Ariga T, Yu RK, Thompson R, McDonald MP (2009) Elimination of GD3 synthase improves memory and reduces amyloid-beta plaque load in transgenic mice. Neurobiol Aging 30:1777–1791. doi:10.1016/j.neurobiolaging.2007.12.022PubMedCrossRefGoogle Scholar
  4. Birklé S, Gao L, Zeng G, Yu RK (2000) Down-regulation of GD3 ganglioside and its O-acetylated derivative by stable transfection with antisense vector against GD3-synthase gene expression in hamster melanoma cells: effects on cellular growth, melanogenesis, and dendricity. J Neurochem 74:547–554. doi:10.1046/j.1471-4159.2000.740547.xPubMedCrossRefGoogle Scholar
  5. Bobowski M, Cazet A, Steenackers A, Delannoy P (2012) Role of complex gangliosides in cancer progression. Carbohydr Chem 37:1–20. doi:10.1039/9781849732765-00001Google Scholar
  6. Busam K, Decker K (1986) Ganglioside biosynthesis in rat liver. Characterization of three sialyltransferases. Eur J Biochem 160:23–30. doi:10.1111/j.1432-1033.1986.tb09934.xPubMedCrossRefGoogle Scholar
  7. Carcel-Trullols J, Stanley JS, Saha R, Shaaf S, Bendre MS, Monzavi-Karbassi B, Suva LJ, Kieber-Emmons T (2006) Characterization of the glycosylation profile of the human breast cancer cell line, MDA-231, and a bone colonizing variant. Int J Oncol 28:1173–1183PubMedGoogle Scholar
  8. Cazet A, Groux-Degroote S, Teylaert B, Kwon KM, Lehoux S, Slomianny C, Kim CH, Le Bourhis X, Delannoy P (2009) GD3 synthase overexpression enhances proliferation and migration of MDA-MB-231 breast cancer cells. Biol Chem 390:601–609. doi:10.1515/BC.2009.054PubMedCrossRefGoogle Scholar
  9. Cazet A, Lefebvre J, Adriaenssens E, Julien S, Bobowski M, Grigoriadis A, Tutt A, Tulasne D, Le Bourhis X, Delannoy P (2010) GD3 synthase expression enhances proliferation and tumor growth of MDA-MB-231 breast cancer cells through c-Met activation. Mol Cancer Res 8:1526–1535. doi:10.1158/1541-7786.MCR-10-0302PubMedCrossRefGoogle Scholar
  10. Cazet A, Bobowski M, Rombouts Y, Lefebvre J, Steenackers A, Popa I, Guérardel Y, Le Bourhis X, Tulasne D, Delannoy P (2012) The ganglioside GD2 induces the constitutive activation of c-Met in MDA-MB-231 breast cancer cells expressing the GD3 synthase. Glycobiology 22:806–816. doi:10.1093/glycob/cws049PubMedCrossRefGoogle Scholar
  11. Chang LY, Mir AM, Thisse C, Guérardel Y, Delannoy P, Thisse B, Harduin-Lepers A (2009) Molecular cloning and characterization of the expression pattern of the zebrafish alpha2, 8-sialyltransferases (ST8Sia) in the developing nervous system. Glycoconj J 26:263–275. doi:10.1007/s10719-008-9165-1PubMedCrossRefGoogle Scholar
  12. Copani A, Melchiorri D, Caricasole A, Martini F, Sale P, Carnevale R, Gradini R, Sortino MA, Lenti L, De Maria R, Nicoletti F (2002) Beta-amyloid-induced synthesis of the ganglioside GD3 is a requisite for cell cycle reactivation and apoptosis in neurons. J Neurosci 22:3963–3968PubMedGoogle Scholar
  13. Dae HM, Kwon HY, Kang NY, Song NR, Kim KS, Kim CH, Lee JH, Lee YC (2009) Isolation and functional analysis of the human glioblastoma-specific promoter region of the human GD3 synthase (hST8Sia I) gene. Acta Biochim Biophys Sin (Shanghai) 41:237–245. doi:10.1093/abbs/gmp007CrossRefGoogle Scholar
  14. Daniotti JL, Rosales Fritz V, Kunda P, Nishi T, Maccioni HJ (1997) Cloning, characterization and developmental expression of alpha2,8 sialyltransferase (GD3 synthase, ST8Sia I) gene in chick brain and retina. Int J Dev Neurosci 15:767–776. doi:10.1016/S0736-5748(97)00027-0PubMedCrossRefGoogle Scholar
  15. De Maria R, Lenti L, Malisan F, D’ Agostino F, Tomassini B, Zeuner A, Rippo MR, Testi R (1997) Requirement for GD3 ganglioside in CD95- and ceramide-induced apoptosis. Science 277:1652–1655. doi:10.1126/science.277.5332.1652PubMedCrossRefGoogle Scholar
  16. Fukumoto S, Mutoh T, Hasegawa T, Miyazaki H, Okada M, Goto G, Furukawa K, Urano T (2000) GD3 synthase gene expression in PC12 cells results in the continuous activation of TrkA and ERK1/2 and enhanced proliferation. J Biol Chem 275:5832–5838. doi:10.1074/jbc.275.8.5832PubMedCrossRefGoogle Scholar
  17. Furukawa K, Horie M, Okutomi K, Sugano S, Furukawa K (2003) Isolation and functional analysis of the melanoma specific promoter region of human GD3 synthase gene. Biochim Biophys Acta 1627:71–78. doi:10.1016/S0167-4781(03)00076-9PubMedCrossRefGoogle Scholar
  18. Furukawa K, Hamamura K, Aixinjueluo W, Furukawa K (2006) Biosignals modulated by tumor-associated carbohydrate antigens: novel targets for cancer therapy. Ann N Y Acad Sci 1086:185–198. doi:10.1196/annals.1377.017PubMedCrossRefGoogle Scholar
  19. Furukawa K, Ohkawa Y, Yamauchi Y, Hamamura K, Ohmi Y, Furukawa K (2012) Fine tuning of cell signals by glycosylation. J Biochem 151:573–578. doi:10.1093/jb/mvs043PubMedCrossRefGoogle Scholar
  20. Gu XB, Gu TJ, Yu RK (1990) Purification to homogeneity of GD3 synthase and partial purification of GM3 synthase from rat brain. Biochem Biophys Res Commun 166:387–393. doi:10.1016/0006-291X(90)91957-TPubMedCrossRefGoogle Scholar
  21. Hamamura K, Furukawa K, Hayashi T, Hattori T, Nakano J, Nakashima H, Okuda T, Mizutani H, Hattori H, Ueda M, Urano T, Lloyd KO, Furukawa K (2005) Ganglioside GD3 promotes cell growth and invasion through p130Cas and paxillin in malignant melanoma cells. Proc Natl Acad Sci USA 102:11041–11046. doi:10.1073/pnas.0503658102PubMedCentralPubMedCrossRefGoogle Scholar
  22. Hamamura K, Hamamura K, Tsuji M, Ohkawa Y, Nakashima H, Miyazaki S, Urano T, Yamamoto N, Ueda M, Furukawa K, Furukawa K (2008) Focal adhesion kinase as well as p130Cas and paxillin is crucially involved in the enhanced malignant properties under expression of ganglioside GD3 in melanoma cells. Biochim Biophys Acta 1780:513–519PubMedCrossRefGoogle Scholar
  23. Haraguchi M, Yamashiro S, Yamamoto A, Furukawa K, Takamiya K, Lloyd KO, Shiku H, Furukawa K (1994) Isolation of GD3 synthase gene by expression cloning of GM3 alpha-2,8-sialyltransferase cDNA using anti-GD2 monoclonal antibody. Proc Natl Acad Sci USA 91:10455–10459. doi:10.1073/pnas.91.22.10455PubMedCentralPubMedCrossRefGoogle Scholar
  24. Harduin-Lepers A (2010) Comprehensive analysis of sialyltransferases in vertebrate genomes. Glycobiol Insights 2:29–61. doi:10.4137/GBI.S3123CrossRefGoogle Scholar
  25. Harduin-Lepers A, Mollicone R, Delannoy P, Oriol R (2005) The animal sialyltransferases and sialyltransferase-related genes: a phylogenetic approach. Glycobiology 15:805–817. doi:10.1093/glycob/cwi063PubMedCrossRefGoogle Scholar
  26. Harduin-Lepers A, Petit D, Mollicone R, Delannoy P, Petit J-M, Oriol R (2008) Evolutionary history of the alpha2,8-sialyltransferase (ST8Sia) gene family: tandem duplications in early deuterostomes explain most of the diversity found in the vertebrate ST8Sia genes. BMC Biol Evol 8:258. doi:10.1186/1471-2148-8-258CrossRefGoogle Scholar
  27. Harduin-Lepers A (2012) Sialobiology: structure, biosynthesis and function, Chapter 5. In Tiralongo J, Martinez-Duncker I (eds) Vertebrate sialyltransferases, pp 85–116. Bentham Science PublishersGoogle Scholar
  28. Kamimura Y, Furukawa K, Kittaka D, Nishio M, Hamamura K, Fukumoto S, Furukawa K (2005) Differential enhancing effects of alpha2,8-sialyltransferase on the cell proliferation and mobility. Int J Oncol 26:337–344PubMedGoogle Scholar
  29. Kang NY, Kim CH, Kim KS, Ko JH, Lee JH, Jeong YK, Lee YC (2007) Expression of the human CMP-NeuAc:GM3 alpha2,8-sialyltransferase (GD3 synthase) gene through the NF-kappaB activation in human melanoma SK-MEL-2 cells. Biochim Biophys Acta 1769:622–630. doi:10.1016/j.bbaexp.2007.08.001PubMedCrossRefGoogle Scholar
  30. Kaufman B, Basu S, Roseman S (1968) Enzymatic synthesis of disialogangliosides from monosialogangliosides by sialyltransferases from embryonic chicken brain. J Biol Chem 243:5804–5807PubMedGoogle Scholar
  31. Kim YJ, Kim KS, Do S, Kim CH, Kim SK, Lee YC (1997) Molecular cloning and expression of human alpha2,8-sialyltransferase (hST8Sia V). Biochem Biophys Res Commun 235:327–330. doi:10.1006/bbrc.1997.6725PubMedCrossRefGoogle Scholar
  32. Kojima N, Kurosawa N, Nishi T, Hanai N, Tsuji S (1994) Induction of cholinergic differentiation with neurite sprouting by de novo biosynthesis and expression of GD3 and b-series gangliosides in Neuro2a cells. J Biol Chem 269:30451–30456PubMedGoogle Scholar
  33. Kosak M (1989) The scanning model for translation, an update. J Cell Biol 108:229–241CrossRefGoogle Scholar
  34. Kwon HY, Dae HM, Song NR, Kim KS, Kim CH, Lee YC (2009) Valproic acid induces transcriptional activation of human GD3 synthase (hST8Sia I) in SK-N-BE(2)-C human neuroblastoma cells. Mol Cells 27:113–118. doi:10.1007/s10059-009-0012-4PubMedCrossRefGoogle Scholar
  35. Kwon HY, Kim SJ, Kim CH, Son SW, Kim KS, Lee JH, Do SI, Lee YC (2010) Triptolide downregulates human GD3 synthase (hST8Sia I) gene expression in SK-MEL-2 human melanoma cells. Exp Mol Med 42:849–855. doi:10.3858/emm.2010.42.12.088PubMedCrossRefGoogle Scholar
  36. Malisan F, Testi R (2002) GD3 ganglioside and apoptosis. Biochim Biophys Acta 1585:179–187. doi:10.1016/S1388-1981(02)00339-6PubMedCrossRefGoogle Scholar
  37. Marconi S, Acler M, Lovato L, De Toni L, Tedeschi E, Anghileri E, Romito S, Cordioli C, Bonetti B (2006) Anti-GD2-like IgM autoreactivity in multiple sclerosis patients. Mult Scler 12:302–308. doi:10.1191/135248506ms1279oaPubMedCrossRefGoogle Scholar
  38. Mesarić M, Decker K (1990) Sialyltransferase activities in cultured rat hepatocytes. Biochem Biophys Res Commun 171:132–137. doi:10.1016/0006-291X(90)91366-ZPubMedCrossRefGoogle Scholar
  39. Moon SK, Kim HM, Lee YC, Kim CH (2004) Disialoganglioside (GD3) synthase gene expression suppresses vascular smooth muscle cell responses via the inhibition of ERK1/2 phosphorylation, cell cycle progression, and matrix metalloproteinase-9 expression. J Biol Chem 279:33063–33070. doi:10.1074/jbc.M313462200PubMedCrossRefGoogle Scholar
  40. Nakayama J, Fukuda MN, Hirabayashi Y, Kanamori A, Sasaki K, Nishi T, Fukuda M (1996) Expression cloning of a human GT3 synthase. GD3 AND GT3 are synthesized by a single enzyme. J Biol Chem 271:3684–3691. doi:10.1074/jbc.271.7.3938PubMedCrossRefGoogle Scholar
  41. Nara K, Watanabe Y, Maruyama K, Kasahara K, Nagai Y, Sanai Y (1994) Expression cloning of a CMP-NeuAc: NeuAc alpha 2-3Gal beta 1-4Glc beta 1-1′Cer alpha 2,8-sialyltransferase (GD3 synthase) from human melanoma cells. Proc Natl Acad Sci USA 91:7952–7956. doi:10.1073/pnas.91.17.7952PubMedCentralPubMedCrossRefGoogle Scholar
  42. Nara K, Watanabe Y, Kawashima I, Tai T, Nagai Y, Sanai Y (1996) Acceptor substrate specificity of a cloned GD3 synthase that catalyzes the biosynthesis of both GD3 and GD1c/GT1a/GQ1b. Eur J Biochem 238:647–652. doi:10.1111/j.1432-1033.1996.0647w.xPubMedCrossRefGoogle Scholar
  43. Oblinger JL, Pearl DK, Boardman CL, Saqr H, Prior TW, Scheithauer BW, Jenkins RB, Burger PC, Yates AJ (2006) Diagnostic and prognostic value of glycosyltransferase mRNA in glioblastoma multiforme patients. Neuropathol Appl Neurobiol 32:410–418. doi:10.1111/j.1365-2990.2006.00742.xPubMedCrossRefGoogle Scholar
  44. Ohkawa Y, Miyazaki S, Hamamura K, Kambe M, Miyata M, Tajima O, Ohmi Y, Yamauchi Y, Furukawa K, Furukawa K (2010) Ganglioside GD3 enhances adhesion signals and augments malignant properties of melanoma cells by recruiting integrins to glycolipid-enriched microdomains. J Biol Chem 285:27213–27223PubMedCrossRefGoogle Scholar
  45. Ohtani Y, Tamai Y, Ohnuki Y, Miura S (1996) Ganglioside alterations in the central and peripheral nervous systems of patients with Creutzfeldt-Jakob disease. Neurodegeneration 5:331–338. doi:10.1006/neur.1996.0045PubMedCrossRefGoogle Scholar
  46. Okada M, Itoh Mi M, Haraguchi M, Okajima T, Inoue M, Oishi H, Matsuda Y, Iwamoto T, Kawano T, Fukumoto S, Miyazaki H, Furukawa K, Aizawa S, Furukawa K (2002) b-series Ganglioside deficiency exhibits no definite changes in the neurogenesis and the sensitivity to Fas-mediated apoptosis but impairs regeneration of the lesioned hypoglossal nerve. J Biol Chem 277:1633–1636. doi:10.1074/jbc.C100395200PubMedCrossRefGoogle Scholar
  47. Percy AK, Gottfries J, Vilbergsson G, Månsson JE, Svennerholm L (1991) Glycosphingolipid glycosyltransferases in human fetal brain. J Neurochem 56:1461–1465. doi:10.1111/j.1471-4159.1991.tb02038.xPubMedCrossRefGoogle Scholar
  48. Pohlentz G, Klein D, Schmitz D, Schwarzmann G, Peter-Katalinić J, Sandhoff K (1988a) Biosynthesis of gangliosides from asialogangliosides in rat liver Golgi vesicles. Biol Chem Hoppe Seyler 369:55–63PubMedCrossRefGoogle Scholar
  49. Pohlentz G, Klein D, Schwarzmann G, Schmitz D, Sandhoff K (1988b) Both GA2, GM2, and GD2 synthases and GM1b, GD1a, and GT1b synthases are single enzymes in Golgi vesicles from rat liver. Proc Natl Acad Sci USA 85:7044–7048. doi:10.1073/pnas.85.19.7044PubMedCentralPubMedCrossRefGoogle Scholar
  50. Prokazova NV, Bergelson LD (1994) Gangliosides and atherosclerosis. Lipids 29:1–5. doi:10.1007/BF02537083PubMedCrossRefGoogle Scholar
  51. Regina Todeschini A, Hakomori SI (2008) Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. Biochim Biophys Acta 1780(3):421–33. doi:10.1016/j.bbagen.2007.10.008PubMedCrossRefGoogle Scholar
  52. Rimoldi S, Papis E, Bernardini G, Prati M, Gornati R (2007) Molecular cloning and expression of alpha2,8-sialyltransferase (ST8Sia I, GD3 Synthase) in Xenopus. Mol Cell Biochem 301:143–153. doi:10.1007/s11010-006-9406-1PubMedCrossRefGoogle Scholar
  53. Ruan S, Lloyd KO (1992) Glycosylation pathways in the biosynthesis of gangliosides in melanoma and neuroblastoma cells: relative glycosyltransferase levels determine ganglioside patterns. Cancer Res 52:5725–5731PubMedGoogle Scholar
  54. Ruckhäberle E, Rody A, Engels K, Gaetje R, von Minckwitz G, Schiffmann S, Grösch S, Geisslinger G, Holtrich U, Karn T, Kaufmann M (2008) Microarray analysis of altered sphingolipid metabolism reveals prognostic significance of sphingosine kinase 1 in breast cancer. Breast Cancer Res Treat 112:41–52. doi:10.1007/s10549-007-9836-9PubMedCrossRefGoogle Scholar
  55. Ruckhäberle E, Karn T, Rody A, Hanker L, Gätje R, Metzler D, Holtrich U, Kaufmann M (2009) Gene expression of ceramide kinase, galactosyl ceramide synthase and ganglioside GD3 synthase is associated with prognosis in breast cancer. J Cancer Res Clin Oncol 135:1005–1013. doi:10.1007/s00432-008-0536-6PubMedCrossRefGoogle Scholar
  56. Sasaki K, Kurata K, Kojima N, Kurosawa N, Ohta S, Hanai N, Tsuji S, Nishi T (1994) Expression cloning of a GM3-specific alpha-2,8-sialyltransferase (GD3 synthase). J Biol Chem 269:15950–15956PubMedGoogle Scholar
  57. Sottocornola E, Colombo I, Vergani V, Taraboletti G, Berra B (1998) Increased tumorigenicity and invasiveness of C6 rat glioma cells transfected with the human alpha-2,8 sialyltransferase cDNA. Invasion Metastasis 18:142–154PubMedCrossRefGoogle Scholar
  58. Steenackers A, Vanbeselaere J, Cazet A, Bobowski M, Rombouts Y, Colomb F, Bourhis XL, Guérardel Y, Delannoy P (2012a) Accumulation of unusual gangliosides GQ3 and GP3 in breast cancer cells expressing the GD3 synthase. Molecules 17:9559–9572. doi:10.3390/molecules17089559PubMedCrossRefGoogle Scholar
  59. Steenackers A, Cazet A, Bobowski M, Rombouts Y, Lefebvre J, Guérardel Y, Tulasne D, Le Bourhis X, Delannoy P (2012b) Expression of GD3 synthase modifies ganglioside profile and increases migration of MCF-7 breast cancer cells. CR Chimie 15:3–14. doi:10.1016/j.crci.2011.05.004CrossRefGoogle Scholar
  60. Tajima O, Egashira N, Ohmi Y, Fukue Y, Mishima K, Iwasaki K, Fujiwara M, Inokuchi J, Sugiura Y, Furukawa K, Furukawa K (2009) Reduced motor and sensory functions and emotional response in GM3-only mice: emergence from early stage of life and exacerbation with aging. Behav Brain Res 198:74–82. doi:10.1016/j.bbr.2008.10.024PubMedCrossRefGoogle Scholar
  61. Takashima S, Kono M, Kurosawa N, Yoshida Y, Tachida Y, Inoue M, Kanematsu T, Tsuji S (2000) Genomic organization and transcriptional regulation of the mouse GD3 synthase gene (ST8Sia I): comparison of genomic organization of the mouse sialyltransferase genes. J Biochem 128:1033–1043PubMedCrossRefGoogle Scholar
  62. Tsuji S, Datta AK, Paulson JC (1996) Systematic nomenclature for sialyltransferases. Glycobiology. 6:V-VII. doi: 10.1093/glycob/6.7.647PubMedCrossRefGoogle Scholar
  63. Vanbeselaere J, Chang L-Y, Harduin-Lepers A, Fabre E, Slommianny C, Biot C, Khoo K-H, Guérardel Y (2012) Zebrafish liver cells is a coherent model for the study of glycosylation in zebrafish. J Proteome Res 11:2164–2177. doi:10.1021/pr200948jPubMedCrossRefGoogle Scholar
  64. Watanabe Y, Nara K, Takahashi H, Nagai Y, Sanai Y (1996) The molecular cloning and expression of alpha 2,8-sialyltransferase (GD3 synthase) in a rat brain. J Biochem 120:1020–1027PubMedCrossRefGoogle Scholar
  65. Wen FQ, Jabbar AA, Patel DA, Kazarian T, Valentino LA (1999) Atherosclerotic aortic gangliosides enhance integrin-mediated platelet adhesion to collagen. Arterioscler Thromb Vasc Biol 19:519–524PubMedCrossRefGoogle Scholar
  66. Yamada A, Fukumoto E, Kamasaki Y, Ida-Yonemochi H, Saku T, Fujiwara T, Fukumoto S (2005) GD3 synthase gene found expressed in dental epithelium and shown to regulate cell proliferation. Arch Oral Biol 50:393–399. doi:10.1016/j.archoralbio.2004.09.014PubMedCrossRefGoogle Scholar
  67. Yamamoto A, Haraguchi M, Yamashiro S, Fukumoto S, Furukawa K, Takamiya K, Atsuta M, Shiku H, Furukawa K (1996) Heterogeneity in the expression pattern of two ganglioside synthase genes during mouse brain development. J Neurochem 66:26–34PubMedCrossRefGoogle Scholar
  68. Yamashiro S, Okada M, Haraguchi M, Furukawa K, Lloyd KO, Shiku H, Furukawa K (1995) Expression of alpha 2,8-sialyltransferase (GD3 synthase) gene in human cancer cell lines: high level expression in melanomas and up-regulation in activated T lymphocytes. Glycoconj J 12:894–900. doi:10.1007/BF00731251PubMedCrossRefGoogle Scholar
  69. Yamashita T, Wada R, Sasaki T, Deng C, Bierfreund U, Sandhoff K, Proia RL (1999) A vital role for glycosphingolipid synthesis during development and differentiation. Proc Natl Acad Sci USA 96:9142–9147. doi:10.1073/pnas.96.16.9142PubMedCentralPubMedCrossRefGoogle Scholar
  70. Yanagisawa M, Liour SS, Yu RK (2004) Involvement of gangliosides in proliferation of immortalized neural progenitor cells. J Neurochem 91:804–812. doi:10.1111/j.1471-4159.2004.02750.xPubMedCrossRefGoogle Scholar
  71. Yu RK, Macala LJ, Taki T, Weinfield HM, Yu FS (1988) Developmental changes in ganglioside composition and synthesis in embryonic rat brain. J Neurochem 50:1825–1829. doi:10.1111/j.1471-4159.1988.tb02484.xPubMedCrossRefGoogle Scholar
  72. Zeng G, Gao L, Ariga T, Yu RK (1996) Molecular cloning of cDNA for rat brain GD3-synthase. Biochem Biophys Res Commun 226:319–323. doi:10.1006/bbrc.1996.1354PubMedCrossRefGoogle Scholar
  73. Zeng G, Gao L, Yu RK (1998) Isolation and functional analysis of the promoter of the rat CMP-NeuAc:GM3 alpha2,8 sialyltransferase gene 1. Biochim Biophys Acta 1397:126–130. doi:10.1016/S0167-4781(98)00030-XPubMedCrossRefGoogle Scholar
  74. Zeng G, Gao L, Birklé S, Yu RK (2000) Suppression of ganglioside GD3 expression in rat F-11 cells reduces tumor growth, angiogenesis and vascular endothelial growth factor production. Cancer Res 60:6670–6676PubMedGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  • Marie Bobowski
    • 1
  • Anne Harduin-Lepers
    • 1
  • Philippe Delannoy
    • 1
  1. 1.Structural and Functional Glycobiology UnitUniversity of Sciences and Technologies of Lille, UMR CNRS 8576Villeneuve d’ AscqFrance

Personalised recommendations