Uronyl-2-Sulfotransferase (UST)

Reference work entry


Uronyl 2-O-sulfotransferase is a class of enzyme that transfers a sulfo group to the 2-OH position of glucuronic acid (GlcA) or iduronic acid (IdoA) present in chondroitin sulfate polysaccharides. Two closely related 2-O-sulfotransferases have been reported: heparan sulfate 2-O-sulfotransferase (HS2ST) (Kobayashi et al. 1997) and chondroitin uronyl 2-O-sulfotransferase (CS2ST) (Kobayashi et al. 1999). CS2ST specifically sulfates CS substrates that consist of the disaccharide repeating unit of GlcA (or) IdoA linked to a galactosamine residue (Fig. 93.1a), whereas HS2ST sulfates only HS substrates that consist of the disaccharide unit of GlcA (or) IdoA linked to a glucosamine residue (Fig. 93.1b). CS2ST and HS2ST share about 56 % homology in the sulfotransferase domain. The products resulting from HS2ST and CS2ST contain 2-O-sulfated glucuronic acid (GlcA2S) and 2-O-sulfated iduronic acid (IdoA2S) residues. The biological functions of IdoA2S residues present in HS have been implicated in binding to fibroblast growth factors to promote cell growth (Bai 1996; Wang et al. 2010; Xu et al. 2012). However, the biological functions of IdoA2S residues present in CS are less defined. This chapter is primarily focused on the discovery of CS2ST (Kobayashi et al. 1999) and a recent mutagenesis study in CS2ST (Xu et al. 2007).


Glucuronic Acid Dermatan Sulfate Sulfo Group Iduronic Acid Sulfotransferase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bai X, Esko JD (1996) An animal cell mutant defective in heparan sulfate hexuronic acid 2-O-sulfation. J Biol Chem 271:17711–17717PubMedCrossRefGoogle Scholar
  2. Bao X, Pavão MSG et al (2005) A functional dermatan sulfate epitope containing the Iduronate(2-O-sulfate)alpha1-3GalNAc(6-O-sulfate) disaccharide in the mouse brain: Demonstration using a novel monoclonal antibody raised against dermatan sulfate of Ascidian ascidia nigra. J Biol Chem 280:23184–23193PubMedCrossRefGoogle Scholar
  3. Bethea HN, Xu D et al (2008) Redirecting the substrate specificity of heparan sulfate 2-O-sulfotransferase by structurally guided mutagenesis. Proc Natl Acad Sci USA 105:18724–18729PubMedCrossRefGoogle Scholar
  4. Hikino M, Mikami T et al (2003) Oversulfated dermatan sulfate exhibits neurite outgrowth-promoting activity toward embryonic mouse hippocampal neurons. J Biol Chem 278:43744–43754PubMedCrossRefGoogle Scholar
  5. Kobayashi M, Habuchi H et al (1997) Molecular cloning and expression of Chinese hamster ovary cell heparan-sulfate 2-sulfotransferase. J Biol Chem 272:13980–13985PubMedCrossRefGoogle Scholar
  6. Kobayashi M, Sugumaran G et al (1999) Molecular cloning and characterization of a human uronyl 2-sulfotransferase that sulfates iduronyl and glucuronyl residues in dermatan/chondroitin sulfate. J Biol Chem 274:10474–10480PubMedCrossRefGoogle Scholar
  7. Maimone MM, Tollefsen DM (1990) Structure of a dermatan sulfate hexasaccharide that binds to heparin cofactor II with high affinity. J Biol Chem 265:18263–18271PubMedGoogle Scholar
  8. Ohtake S, Kimata K et al (2005) Recognition of sulfation pattern of chondroitin sulfate by Uronosyl 2-O-sulfotransferase. J Biol Chem 280:39115–39123PubMedCrossRefGoogle Scholar
  9. Sen J, Goltz JS et al (2000) Windbeutel is required for function and correct subcellular localization of the Drosophila patterning protein pipe. Development 127:5541–5550PubMedGoogle Scholar
  10. Sen J, Goltz JS et al (1998) Spatially restricted expression of pipe in the Drosophila egg chamber defines embryonic dorsal-ventral polarity. Cell 95:471–481PubMedCrossRefGoogle Scholar
  11. Sergeev P, Streit A et al (2001) The Drosophila dorsoventral determinant PIPE contains ten copies of a variable domain homologous to mammalian heparan sulfate 2-sulfotransferase. Dev Dynam 220:122–132CrossRefGoogle Scholar
  12. Sugiura N, Shioiri T et al (2012) Construction of a chondroitin sulfate library with defined structures and analysis of molecular interactions. J Biol Chem 287(52):43390–400, M112.412676PubMedCrossRefGoogle Scholar
  13. Wang Z, Xu Y et al (2010) Preactivation-based one-pot combinatorial synthesis of heparin-like hexasaccharides for the analysis of heparin-protein interactions. Chem Eur J 16:8365–8375PubMedCentralPubMedCrossRefGoogle Scholar
  14. Xu D, Song D et al (2007) Mutational study of heparan sulfate and chondroitin sulfate 2-O-sulfotransferases J. Biol Chem 282:8356–8367CrossRefGoogle Scholar
  15. Xu Y, Wang Z et al (2012) Redirecting the biological activities of heparan sulfate oligosaccharides using a chemoenzymatic approach. Glycobiology 22:96–106PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Division of Chemical Biology and Medicinal ChemistryEshelman School of Pharmacy, University of North CarolinaChapel HillUSA

Personalised recommendations