Advertisement

UDP-GlcNAc 2-Epimerase/ManNAc Kinase (GNE)

  • Werner Reutter
  • Stephan Hinderlich
  • Wolfgang Kemmner
Reference work entry

Abstract

N-Acetylneuraminic acid (Neu5Ac) or sialic acid is a pivotal structural and functional monosaccharide in any mammalian cell surface. In the membrane bound or soluble glycoconjugates, this electronegatively charged sugar is localized in the terminal position. Neu5Ac mediates recognition processes like cell-cell, cell-matrix, receptor-mediator, or cell-pathogen interactions (Varki 1997; Schauer 2004). Neu5Ac is formed in vivo by a multistep pathway (Roseman 1970) beginning with the conversion of fructose-6-P to glucosamine-6-P, which is further metabolized to UDP-N-acetylglucosamine (UDP-GlcNAc), the crucial precursor of Neu5Ac, by the hexosamine pathway. This substrate is converted to N-acetylmannosamine (ManNAc) by a specific UDP-GlcNAc 2-epimerase and then phosphorylated to ManNAc 6-P (Fig. 134.1). Both reactions are catalyzed by one enzyme, the bifunctional UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE). ManNAc 6-P is then condensed with phosphoenolpyruvate forming sialic acid 9-P. This compound is further metabolized to CMP-sialic acid, which is transported to the Golgi apparatus, and they are used for the formation of sialylated glycoconjugates (Fig. 134.1).

Keywords

Sialic Acid Enzyme Sample Bifunctional Enzyme Potassium Borate Hereditary Inclusion Body Myopathy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Al-Rawi S, Hinderlich S, Reutter W, Giannis A (2004) Synthesis and biochemical properties of reversible inhibitors of UDP-N-acetylglucosamine 2-epimerase. Angew Chem Int Ed Engl 43:4366–4370PubMedCrossRefGoogle Scholar
  2. Amsili S, Zer H, Hinderlich S, Krause S, Becker-Cohen M, MacArthur DG, North KN, Mitrani-Rosenbaum S (2008) UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) binds to alpha-actinin 1: novel pathways in skeletal muscle? PLoS One 3:e2477PubMedCentralPubMedCrossRefGoogle Scholar
  3. Argov Z, Mitrani-Rosenbaum S (2008) The hereditary inclusion body myopathy enigma and its future therapy. Neurotherapeutics 5:633–637PubMedCrossRefGoogle Scholar
  4. Benie AJ, Blume A, Schmidt RR, Reutter W, Hinderlich S, Peters T (2004) Characterization of ligand binding to the bifunctional key enzyme in the sialic acid biosynthesis by NMR: II. Investigation of the ManNAc kinase functionality. J Biol Chem 279:55722–55727PubMedCrossRefGoogle Scholar
  5. Blume A, Benie AJ, Stolz F, Schmidt RR, Reutter W, Hinderlich S, Peters T (2004a) Characterization of ligand binding to the bifunctional key enzyme in the sialic acid biosynthesis by NMR: I. Investigation of the UDP-GlcNAc 2-epimerase functionality. J Biol Chem 279:55715–55721PubMedCrossRefGoogle Scholar
  6. Blume A, Ghaderi D, Liebich V, Hinderlich S, Donner P, Reutter W, Lucka L (2004b) UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase, functionally expressed in and purified from Escherichia coli, yeast, and insect cells. Protein Expr Purif 35:387–396PubMedCrossRefGoogle Scholar
  7. Cardini CE, Leloir LF (1957) Enzymatic formation of acetylgalactosamine. J Biol Chem 225:317–324PubMedGoogle Scholar
  8. Comb DG, Roseman S (1958) Enzymatic synthesis of N-acetyl-D-mannosamine. Biochim Biophys Acta 29:653–654PubMedCrossRefGoogle Scholar
  9. Effertz K, Hinderlich S, Reutter W (1999) Selective loss of either the epimerase or kinase activity of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase due to site-directed mutagenesis based on sequence alignments. J Biol Chem 274:28771–28778PubMedCrossRefGoogle Scholar
  10. Eisenberg I, Avidan N, Potikha T, Hochner H, Chen M, Olender T, Barash M, Shemesh M, Sadeh M, Grabov-Nardini G, Shmilevich I, Friedmann A, Karpati G, Bradley WG, Baumbach L, Lancet D, Asher EB, Beckmann JS, Argov Z, Mitrani-Rosenbaum S (2001) The UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene is mutated in recessive hereditary inclusion body myopathy. Nat Genet 29:83–87PubMedCrossRefGoogle Scholar
  11. Fontaine G, Biserte G, Montreuil J, Dupont A, Farriaux JP (1968) Sialuria: an original metabolic disorder. Helv Paediatr Acta 17:1–32Google Scholar
  12. Galeano B, Klootwijk R, Manoli I, Sun M, Ciccone C, Darvish D, Starost MF, Zerfas PM, Hoffmann VJ, Hoogstraten-Miller S, Krasnewich DM, Gahl WA, Huizing M (2007) Mutation in the key enzyme of sialic acid biosynthesis causes severe glomerular proteinuria and is rescued by N-acetylmannosamine. J Clin Invest 117:1585–1594PubMedCentralPubMedCrossRefGoogle Scholar
  13. Ghaderi D, Strauss HM, Reinke S, Cirak S, Reutter W, Lucka L, Hinderlich S (2007) Evidence for dynamic interplay of different oligomeric states of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase by biophysical methods. J Mol Biol 369:746–758PubMedCrossRefGoogle Scholar
  14. Giordanengo V, Ollier L, Lanteri M, Lesimple J, March D, Thyss S, Lefebvre JC (2004) Epigenetic reprogramming of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) in HIV-1-infected CEM T cells. FASEB J 18:1961–1963PubMedGoogle Scholar
  15. Gosh S, Roseman S (1961) Enzymatic phosphorylation of N-acetyl-D-mannosamine. Proc Natl Acad Sci U S A 47:955–958CrossRefGoogle Scholar
  16. Harms E, Kreisel W, Morris HP, Reutter W (1973) Biosynthesis of N-acetylneuraminic acid in Morris hepatomas. Eur J Biochem 32:254–262PubMedCrossRefGoogle Scholar
  17. Hinderlich S, Stäsche R, Zeitler R, Reutter W (1997) A bifunctional enzyme catalyzes the first two steps in N-acetylneuraminic acid biosynthesis of rat liver. Purification and characterization of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. J Biol Chem 272:24313–24318PubMedCrossRefGoogle Scholar
  18. Horstkorte R, Nöhring S, Danker K, Effertz K, Reutter W, Lucka L (2000) Protein kinase C phosphorylates and regulates UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase. FEBS Lett 470:315–318PubMedCrossRefGoogle Scholar
  19. Huizing M, Krasnewich DM (2009) Hereditary inclusion body myopathy: a decade of progress. Biochim Biophys Acta 1792:881–887PubMedCentralPubMedCrossRefGoogle Scholar
  20. Ito M, Sugihara K, Asaka T, Toyama T, Yoshihara T, Furuichi K, Wada T, Asano M (2012) Glycoprotein hyposialylation gives rise to a nephrotic-like syndrome that is prevented by sialic acid administration in GNE V572L point-mutant mice. PLoS One 7:e29873PubMedCentralPubMedCrossRefGoogle Scholar
  21. Kakani S, Yardeni T, Poling J, Ciccone C, Niethamer T, Klootwijk ED, Manoli I, Darvish D, Hoogstraten-Miller S, Zerfas P, Tian E, Ten Hagen KG, Kopp JB, Gahl WA, Huizing M (2012) The Gne M712T mouse as a model for human glomerulopathy. Am J Pathol 180:1431–1440PubMedCrossRefGoogle Scholar
  22. Kayser H, Zeitler R, Kannicht C, Grunow D, Nuck R, Reutter W (1992) Biosynthesis of a nonphysiological sialic acid in different rat organs, using N-propanoyl-D-hexosamines as precursors. J Biol Chem 267:16934–16938PubMedGoogle Scholar
  23. Kemmner W, Kessel P, Sanchez-Ruderisch H, Möller H, Hinderlich S, Schlag PM, Detjen K (2012) Loss of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) induces apoptotic processes in pancreatic carcinoma cells. FASEB J 26:938–946PubMedCrossRefGoogle Scholar
  24. Keppler OT, Hinderlich S, Langner J, Schwartz-Albiez R, Reutter W, Pawlita M (1999) UDP-GlcNAc 2-epimerase: a regulator of cell surface sialylation. Science 284:1372–1376PubMedCrossRefGoogle Scholar
  25. Kikuchi K, Tsuiki S (1973) Purification and properties of UDP-N-acetylglucosamine 2′-epimerase from rat liver. Biochim Biophys Acta 327:193–206PubMedCrossRefGoogle Scholar
  26. Kornfeld S, Kornfeld R, Neufeld E, O’Brien PJ (1964) The feedback control of sugar nucleotide biosynthesis in liver. Proc Natl Acad Sci U S A 52:371–379PubMedCentralPubMedCrossRefGoogle Scholar
  27. Kundig W, Gosh S, Roseman S (1966) The sialic acids. VII. N-Acyl-D-mannosamine kinase from rat liver. J Biol Chem 241:5619–5626PubMedGoogle Scholar
  28. Malicdan MC, Noguchi S, Nonaka I, Hayashi YK, Nishino I (2007) A Gne knockout mouse expressing human GNE D176V mutation develops features similar to distal myopathy with rimmed vacuoles or hereditary inclusion body myopathy. Hum Mol Genet 16:2669–2682PubMedCrossRefGoogle Scholar
  29. Malicdan MC, Noguchi S, Tokutomi T, Goto Y, Nonaka I, Hayashi YK, Nishino I (2012) Peracetylated N-acetylmannosamine, a synthetic sugar molecule, efficiently rescues muscle phenotype and biochemical defects in mouse model of sialic acid-deficient myopathy. J Biol Chem 287:2689–2705PubMedCrossRefGoogle Scholar
  30. Martinez J, Nguyen LD, Hinderlich S, Zimmer R, Tauberger E, Reutter W, Saenger W, Fan H, Moniot S (2012) Crystal structures of N-acetylmannosamine kinase provide insights into enzyme activity and inhibition. J Biol Chem 287:13656–13665PubMedCrossRefGoogle Scholar
  31. Möller H, Böhrsch V, Lucka L, Hackenberger CP, Hinderlich S (2011) Efficient metabolic oligosaccharide engineering of glycoproteins by UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) knock-down. Mol Biosyst 7:2245–2251PubMedCrossRefGoogle Scholar
  32. Montreuil J, Biserte G, Strecker G, Spik G, Fontaine G, Farriaux JP (1968) Description of a new type of melituria, called sialuria. Clin Chim Acta 21:61–69PubMedCrossRefGoogle Scholar
  33. Nemunaitis G, Jay CM, Maples PB, Gahl WA, Huizing M, Yardeni T, Tong AW, Phadke AP, Pappen BO, Bedell C, Allen H, Hernandez C, Templeton NS, Kuhn J, Senzer N, Nemunaitis J (2011) Hereditary inclusion body myopathy: single patient response to intravenous dosing of GNE gene lipoplex. Hum Gene Ther 22:1331–1341PubMedCrossRefGoogle Scholar
  34. Niethamer TK, Yardeni T, Leoyklang P, Ciccone C, Astiz-Martinez A, Jacobs K, Dorward HM, Zerfas PM, Gahl WA, Huizing M (2012) Oral monosaccharide therapies to reverse renal and muscle hyposialylation in a mouse model of GNE myopathy. Mol Genet Metab 107:748–755PubMedCentralPubMedCrossRefGoogle Scholar
  35. Nishino I, Noguchi S (2012) Sialic acid supplementation therapy for distal myopathy with rimmed vacuoles (GNE myopathy). Rinsho Shinkeigaku 52:1210–1212PubMedCrossRefGoogle Scholar
  36. Nishino I, Noguchi S, Murayama K, Driss A, Sugie K, Oya Y, Nagata T, Chida K, Takahashi T, Takusa Y, Ohi T, Nishimiya J, Sunohara N, Ciafaloni E, Kawai M, Aoki M, Nonaka I (2002) Distal myopathy with rimmed vacuoles is allelic to hereditary inclusion body myopathy. Neurology 59:1689–1693PubMedCrossRefGoogle Scholar
  37. Oetke C, Hinderlich S, Reutter W, Pawlita M (2003) Epigenetically mediated loss of UDP-GlcNAc 2-epimerase/ManNAc kinase expression in hyposialylated cell lines. Biochem Biophys Res Commun 308:892–898PubMedCrossRefGoogle Scholar
  38. Reinke SO, Hinderlich S (2007) Prediction of three different isoforms of the human UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. FEBS Lett 581:3327–3331PubMedCrossRefGoogle Scholar
  39. Reinke SO, Lehmer G, Hinderlich S, Reutter W (2009) Regulation and pathophysiological implications of UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) as the key enzyme of sialic acid biosynthesis. Biol Chem 390:591–599PubMedCrossRefGoogle Scholar
  40. Roseman S (1970) The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion. Chem Phys Lipids 5:270–297PubMedCrossRefGoogle Scholar
  41. Salo WL, Fletcher HG (1970) Studies on the mechanism of action of uridine diphosphate N-acetylglucosamine 2-epimerase. Biochemistry 9:878–881PubMedCrossRefGoogle Scholar
  42. Saxon E, Bertozzi CR (2000) Cell surface engineering by a modified Staudinger reaction. Science 287:2007–2010PubMedCrossRefGoogle Scholar
  43. Schauer R (2004) Sialic acids: fascinating sugars in higher animals and man. Zoology 107:49–64PubMedCrossRefGoogle Scholar
  44. Schwarzkopf M, Knobeloch KP, Rohde E, Hinderlich S, Wiechens N, Lucka L, Horak I, Reutter W, Horstkorte R (2002) Sialylation is essential for early development in mice. Proc Natl Acad Sci U S A 99:5267–5270PubMedCentralPubMedCrossRefGoogle Scholar
  45. Seppala R, Lehto VP, Gahl WA (1999) Mutations in the human UDP-N-acetylglucosamine 2-epimerase gene define the disease sialuria and the allosteric site of the enzyme. Am J Hum Genet 64:1563–1569PubMedCentralPubMedCrossRefGoogle Scholar
  46. Sommar KM, Ellis DB (1972) Uridine diphosphate N-acetyl-D-glucosamine 2-epimerase from rat liver. I. Catalytic and regulatory properties. Biochim Biophys Acta 268:581–589PubMedCrossRefGoogle Scholar
  47. Spivak CT, Roseman S (1966) UDP-N-acetyl-D-glucosamine 2′-epimerase. Methods Enzymol 9:612–615CrossRefGoogle Scholar
  48. Stäsche R, Hinderlich S, Weise C, Effertz K, Lucka L, Moormann P, Reutter W (1997) A bifunctional enzyme catalyzes the first two steps in N-acetylneuraminic acid biosynthesis of rat liver. Molecular cloning and functional expression of UDP-N-acetyl-glucosamine 2-epimerase/N-acetylmannosamine kinase. J Biol Chem 272:24319–24324PubMedCrossRefGoogle Scholar
  49. Stolz F, Reiner M, Blume A, Reutter W, Schmidt RR (2004) Novel UDP-glycal derivatives as transition state analogue inhibitors of UDP-GlcNAc 2-epimerase. J Org Chem 69:665–679PubMedCrossRefGoogle Scholar
  50. Tong Y, Tempel W, Nedyalkova L, Mackenzie F, Park HW (2009) Crystal structure of the N-acetylmannosamine kinase domain of GNE. PLoS One 4:e7165PubMedCentralPubMedCrossRefGoogle Scholar
  51. Varki A (1997) Sialic acids as ligands in recognition phenomena. FASEB J 11:248–255PubMedGoogle Scholar
  52. Weidemann W, Stelzl U, Lisewski U, Bork K, Wanker EE, Hinderlich S, Horstkorte R (2006) The collapsin response mediator protein 1 (CRMP-1) and the promyelocytic leukemia zinc finger protein (PLZF) bind to UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE), the key enzyme of sialic acid biosynthesis. FEBS Lett 580:6649–6654PubMedCrossRefGoogle Scholar
  53. Weiss P, Tietze F, Gahl WA, Seppala R, Ashwell G (1989) Identification of the metabolic defect in sialuria. J Biol Chem 264:17635–17636PubMedGoogle Scholar
  54. Yardeni T, Choekyi T, Jacobs K, Ciccone C, Patzel K, Anikster Y, Gahl WA, Kurochkina N, Huizing M (2011) Identification, tissue distribution, and molecular modeling of novel human isoforms of the key enzyme in sialic acid synthesis, UDP-GlcNAc 2-epimerase/ManNAc kinase. Biochemistry 50:8914–8925PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  • Werner Reutter
    • 1
  • Stephan Hinderlich
    • 2
  • Wolfgang Kemmner
    • 3
  1. 1.Institute of Biochemistry and Molecular BiologyCharité - Universitätsmedizin BerlinBerlin-DahlemGermany
  2. 2.Department of Life Sciences and TechnologyBeuth Hochschule für Technik Berlin - University of Applied SciencesBerlinGermany
  3. 3.Charite - Universitätsmedizin Berlin, Experimental and Clinical Research CenterBerlinGermany

Personalised recommendations