Mannosyl (Alpha-1,3-)-Glycoprotein Beta-1,4-N-Acetylglucosaminyltransferase, Isozyme A,B (MGAT4A,B)

  • Kazuaki Ohtsubo
  • Naoyuki Taniguchi
Reference work entry


Branches of complex-type multi-antennary N-glycan possess various carbohydrate moieties to interact with other molecules and exert micromolecular influences to their carrier proteins and counterpart molecules. Thereby, regulation of the branch formation on N-glycans is important for the maintenance of cellular homeostasis in whole body (Ohtsubo and Marth 2006). Indeed, amount of the fractions of multi-antennary N-glycans of bioactive glycoproteins is altered in response to physiological conditions that modulate their biological activities. The number and complexity of antennae primarily reflect the portfolio of expressed N-acetylglucosaminyltransferases (GnTs) and processing enzymes (Schachter 1991). GnT-IV is an indispensable enzyme producing multi-antennary N-glycans cooperatively with GnT-V. GnT-IV gene family consists of three genes named GnT-IVa, GnT-IVb, and GnT-IV-H, respectively (Minowa et al. 1998; Yoshida et al. 1998; Sakamoto et al. 2000). GnT-IVa and GnT-IVb isoenzymes have GnT-IV enzymatic activity and share substrate specificity with different tissue distribution profiles. In the past decades, the pathophysiological significance of the GnT-IV-dependent production of complex-type multi-antennary N-glycans has been gradually revealed. Attenuation and aberrant induction of GnT-IV enzymatic activity are associated with pathogenesis of grievous diseases.


Acceptor Substrate Branch Formation Double Deficient Mouse Tissue Distribution Profile Human Hepatic Carcinoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Brockhausen I, Narasimhan S, Schachter H (1988) The biosynthesis of highly branched N-glycans: studies on the sequential pathway and functional role of N-acetylglucosaminyltransferases I, II, III, IV, V and VI. Biochimie 70:1521–1533PubMedCrossRefGoogle Scholar
  2. D’Arrigo A, Belluco C, Ambrosi A, Digito M, Esposito G, Bertola A, Fabris M, Nofrate V, Mammano E, Leon A, Nitti D, Lise M (2005) Metastatic transcriptional pattern revealed by gene expression profiling in primary colorectal carcinoma. Int J Cancer 115:256–262PubMedCrossRefGoogle Scholar
  3. Endo T, Nishimura R, Kawano T, Mochizuki M, Kobata A (1987) Structural differences found in the asparagine-linked sugar chains of human chorionic gonadotropins purified from the urine of patients with invasive mole and with choriocarcinoma. Cancer Res 47:5242–5245PubMedGoogle Scholar
  4. Furukawa T, Youssef EM, Yatsuoka T, Yokoyama T, Makino N, Inoue H, Fukushige S, Hoshi M, Hayashi Y, Sunamura M, Horii A (1999) Cloning and characterization of the human UDP-N-acetylglucosamine: alpha-1,3-d-mannoside beta-1,4-N- acetylglucosaminyltransferase IV-homologue (hGnT-IV-H) gene. J Hum Genet 44:397–401PubMedCrossRefGoogle Scholar
  5. Gleeson PA, Schachter H (1983) Control of glycoprotein synthesis. J Biol Chem 258:6162–6173PubMedGoogle Scholar
  6. Gunton JE, Kulkarni RN, Yim S, Okada T, Hawthorne WJ, Tseng Y-H, Roberson RS, Ricord C, O’Connell PJ, Gonzalez FJ, Kahn CR (2005) Loss of ARNT/HIF1 mediates altered gene expression and pancreatic-islet dysfunction in human type 2 diabetes. Cell 122:337–349PubMedCrossRefGoogle Scholar
  7. Guo JM, Zhang XY, Chen HL, Wang GM, Zhang YK (2001) Structural alterations of sugar chains in urine fibronectin from bladder cancer patients and its enzymatic mechanism. J Cancer Res Clin Oncol 127:512–519PubMedCrossRefGoogle Scholar
  8. Hase S, Ikenaka T, Matsushima Y (1978) Structure analyses of oligosaccharides by tagging of the reducing end sugars with a fluorescent compound. Biochem Biophys Res Commun 85:257–263PubMedCrossRefGoogle Scholar
  9. Hase S, Ibuki T, Ikenaka T (1984) Reexamination of the pyridylamination used for fluorescence labeling of oligosaccharides and its application to glycoproteins. J Biochem 95:197–203PubMedGoogle Scholar
  10. Hattori M, Hachisu T, Shimohigashi Y, Wakabayashi K (1988) Conformation of the β subunit of deglycosylated human chorionic gonadotropin in the interaction at receptor sites. Mol Cell Endocrinol 57:17–23PubMedGoogle Scholar
  11. Kobata A, Yamashita K (1984) The sugar chains of γ-glutamyltransferase. Pure Appl Chem 56:821–832CrossRefGoogle Scholar
  12. López-Orduña E, Cruz M, García-Mena J (2007) The transcription of MGAT4A glycosyl transferase is increased in white cells of peripheral blood of type 2 diabetes patients. BMC Genet 8:73PubMedCentralPubMedCrossRefGoogle Scholar
  13. McCarthy MI (2003) Growing evidence for diabetes susceptibility genes from genome scan data. Curr Diab Rep 3:159–167PubMedCrossRefGoogle Scholar
  14. Minowa MT, Oguri S, Yoshida A, Hara T, Iwamatsu A, Ikenaga H, Takeuchi M (1998) cDNA cloning and expression of bovine UDP-N-acetylglucosamine: alpha1, 3-d-mannoside beta1,4-N-acetylglucosaminyltransferase IV. J Biol Chem 273:11556–11562PubMedCrossRefGoogle Scholar
  15. Nan BC, Shao DM, Chen HL, Huang Y, Gu JX, Zhang YB, Wu ZG (1998) Alteration of N-acetylglucosaminyltransferases in pancreatic carcinoma. Glycoconj J 15:1033–1037PubMedCrossRefGoogle Scholar
  16. Narasimhan S, Schachter H, Rajalakshmi S (1988) Expression of N-acetylglucosaminyltransferase III in hepatic nodules during rat liver carcinogenesis promoted by orotic acid. J Biol Chem 263:1273–1281PubMedGoogle Scholar
  17. Nishikawa A, Gu J, Fujii S, Taniguchi N (1990) Determination of N-acetylglucosaminyltransferase III, IV, and V in normal and hepatoma tissues of rat. Biochim Biophys Acta 1035:313–318PubMedCrossRefGoogle Scholar
  18. Oguri S, Minowa MT, Ihara Y, Taniguchi N, Ikenaga H, Takeuchi M (1997) Purification and characterization of UDP-N-acetylglucosamine:alpha1,3-d-mannoside beta1,4-N-acetylglucosaminyltransferase. J Biol Chem 272:22721–22727PubMedCrossRefGoogle Scholar
  19. Oguri S, Minowa MT, Yoshida A, Takamatsu S, Hara T, Takeuchi M (1999) Two isoenzymes of human N-acetylglucosaminyltransferase IV (GnT-IV)- what are the differences between them? Glycoconj J 16:S74Google Scholar
  20. Oguri S, Yoshida A, Minowa MT, Takeuchi M (2006) Kinetic properties and substrate specificities of two recombinant human N-acetylglucosaminyltransferase-IV isozymes. Glycoconj J 23:473–480PubMedCrossRefGoogle Scholar
  21. Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126:855–867PubMedCrossRefGoogle Scholar
  22. Ohtsubo K, Takamatsu S, Minowa MT, Yosida A, Takeuchi M, Marth JD (2005) Dietary and genetic control of glucose transporter 2 glycosylation promotes insulin secretion in suppressing diabetes. Cell 123:1307–1321PubMedCrossRefGoogle Scholar
  23. Ohtsubo K, Chen MZ, Olefsky JM, Marth JD (2011) Pathway to diabetes through attenuation of pancreatic beta cell glycosylation and glucose transport. Nat Med 17:1067–1075PubMedCentralPubMedCrossRefGoogle Scholar
  24. Reynisdottir I, Thorleifsson G, Benediktsson R, Sigurdsson G, Emilsson V, Einarsdottir AS, Hjorleifsdottir EE, Orlygsdottir GT, Hrafnkelsdottir S, Saemundsdottir SB, Halldorsson S, Hrafnkelsdottir S, Sigurjonsdottir SB, Steinsdottir S, Martin M, Kochan JP, Rhees BK, Grant SF, Frigge ML, Kong A, Gudnason V, Stefansson K, Gulcher JR (2003) Localization of a susceptibility gene for type 2 diabetes to chromosome 5q34-q35.2. Am J Hum Genet 73:323–335PubMedCentralPubMedCrossRefGoogle Scholar
  25. Rice KG, Weisz OA, Barthel T, Lee YG (1990) Defined geometry of binding between triantennary glycopeptide and the asialoglycoprotein receptor of rat hepatocytes. J Biol Chem 265:18429–18434PubMedGoogle Scholar
  26. Sakamoto Y, Taguchi T, Honke K, Korekane H, Watanabe H, Tano Y, Dohmae N, Takio K, Horii A, Taniguchi N (2000) Molecular cloning and expression of cDNA encoding chicken UDP-N-acetyl-d-glucosamine (GlcNAc): GlcNAcbeta 1-6(GlcNAcbeta 1-2)- manalpha 1- R[GlcNAc to man]beta 1,4N-acetylglucosaminyltransferase VI. J Biol Chem 275:36029–36034. doi:10.1074/jbc.M005860200PubMedCrossRefGoogle Scholar
  27. Schachter H (1991) The ‘yellow brick road’ to branched complex N-glycans. Glycobiology 1:453–461PubMedCrossRefGoogle Scholar
  28. Taguchi T, Ogawa T, Kitajima K, Inoue S, Inoue Y, Ihara Y, Sakamoto Y, Nagai K, Taniguchi N (1998) A method for determination of UDP-GlcNAc: GlcNAcβ1-6(GlcNAcβ1-2)Manα1-R [GlcNAc to Man]β1-4N-acetylglucosaminyltransferase VI activity using a pyridylaminated tetraantennary oligosaccharide as an acceptor substrate. Anal Biochem 255:155–157PubMedCrossRefGoogle Scholar
  29. Takamatsu S, Oguri S, Minowa MT, Yoshida A, Nakamura K, Takeuchi M, Kobata A (1999) Unusually high expression of N-acetylglucosaminyltransferase-IVa in human choriocarcinoma cell lines: a possible enzymatic basis of the formation of abnormal biantennary sugar chain. Cancer Res 59:3949–3953PubMedGoogle Scholar
  30. Takamatsu S, Antonopoulos A, Ohtsubo K, Ditto D, Chiba Y, Le DT, Morris HR, Haslam SM, Dell A, Marth JD, Taniguchi N (2010) Physiological and glycomic characterization of N-acetylglucosaminyltransferase -IVa and -IVb double deficient mice. Glycobiology 20:485–497PubMedCrossRefGoogle Scholar
  31. Takeuchi M, Inoue N, Strickland TW, Kubota M, Wada M, Shimizu R, Hoshi S, Kozutsumi H, Takasaki S, Kobata A (1989) Relationship between sugar chain structure and biological activity of recombinant human erythropoietin produced in Chinese hamster ovary cells. Proc Natl Acad Sci USA 86:7819–7822PubMedCrossRefGoogle Scholar
  32. Taniguchi N, Nishikawa A, Fujii S, Gu JG (1989) Glycosyltransferase assays using pyridylaminated acceptors: N-acetylglucosaminyltransferase III, IV, and V. Methods Enzymol 179:397–408PubMedCrossRefGoogle Scholar
  33. Tokugawa K, Oguri S, Takeuchi M (1996) Large scale preparation of PA-oligosaccharides from glycoproteins using an improved extraction method. Glycoconj J 13:53–56PubMedCrossRefGoogle Scholar
  34. Van Tilburg JHO, Sandkuijl LA, Strengman E, Van Someren H, Rigters-Aria CAE, Pearson PL, Haeften TW, Wijmenga C (2003) A genome-wide scan in type 2 diabetes mellitus provides independent replication of a susceptibility locus on 18p11 and suggests the existence of novel loci on 2q12 and 19q13. J Clin Endocrinol Metab 88:2223–2230PubMedCrossRefGoogle Scholar
  35. Yamashita K, Totani K, Iwaki Y, Takamisawa I, Tateishi N, Higashi T, Sakamoto Y, Kobata A (1989) Comparative study of the sugar chains of gamma-glutamyltransferasepeptidases purified from human hepatocellular carcinoma and from human liver. J Biochem (Tokyo) 105:728–735Google Scholar
  36. Yoshida A, Minowa MT, Takamatsu S, Hara T, Ikenaga H, Takeuchi M (1998) A novel second isoenzyme of the human UDP-N-acetylglucosamine:alpha1,3-d-mannoside beta1,4-N-acetylglucosaminyltransferase family: cDNA cloning, expression, and chromosomal assignment. Glycoconj J 15:1115–1123PubMedCrossRefGoogle Scholar
  37. Yoshida A, Minowa MT, Takamatsu S, Hara T, Oguri S, Ikenaga H, Takauchi M (1999) Tissue-specific expression and chromosomal mapping of a human UDP-N-acetylglucosamine: alpha1,3-d-mannoside b1,4-N-acetylglucosaminyltransferase. Glycobiology 9:303–310PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Department of Analytical Biochemistry, School of Health SciencesKumamoto UniversityKumamotoJapan
  2. 2.Disease Glycomics Team, Systems Glycobiology Research GroupRIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, RIKENWakoJapan

Personalised recommendations