Mannosyl-Oligosaccharide Glucosidase (Glucosidase I, MOGS)

  • Alison V. Nairn
  • Kelley W. Moremen
Reference work entry


The synthesis of asparagine-linked glycoproteins in eukaryotes occurs via the transfer of dolichol-linked Glc3Man9GlcNAc2 oligosaccharide at specific Asn-X-Ser/Thr sequons via the oligosaccharyl transferase (Kornfeld and Kornfeld 1985; Waechter and Lennarz 1976). Following transfer of this oligosaccharide to the peptide, sugar residues are removed or added by specific enzymes to create a diverse population of high-mannose, hybrid, or complex-type glycans as the glycoprotein moves through the secretory pathway. The first step in the remodeling of the Glc3Man9GlcNAc2 oligosaccharide is the removal of a single α1,2-linked glucose from the nonreducing terminal end of the α1,3Man branch to produce Glc2Man9GlcNAc2 (Fig. 113.1). This initial processing step is completed by mannosyl-oligosaccharide glucosidase (MOGS), also known as α-glucosidase I, which is a member of CAZy glycosyl hydrolase family 63 (Henrissat 1991). The removal of the terminal α1,2-linked glucose in the endoplasmic reticulum is the initial step in the processing and potential remodeling of N-glycans in the secretory pathway. Following removal of the distal α1,2 glucose residue to produce Glc2Man9GlcNAc2, a second ER α-glucosidase, the hetero-dimeric α-glucosidase II, removes the two remaining glucose residues.


Bovine Mammary Gland Putative Binding Motif Chinese Hamster Ovary Mutant Oligosaccharyl Transferase Initial Processing Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Atkinson PH, Lee JT (1984) Co-translational excision of alpha-glucose and alpha-mannose in nascent vesicular stomatitis virus G protein. J Cell Biol 98:2245–2249PubMedCrossRefGoogle Scholar
  2. Barker MK, Wilkinson BL, Faridmoayer A, Scaman CH, Fairbanks AJ, Rose DR (2011) Production and crystallization of processing alpha-glucosidase I: pichia pastoris expression and a two-step purification toward structural determination. Protein Expr Purif 79:96–101PubMedCrossRefGoogle Scholar
  3. Bause E, Erkens R, Schweden J, Jaenicke L (1986) Purification and characterization of trimming glucosidase I from Saccharomyces cerevisiae. FEBS Lett 206:208–212CrossRefGoogle Scholar
  4. Bause E, Gross A, Schweden J (1991) N-methyl-N-(5-carboxypentyl)-1-deoxynojirimycin, a new affinity ligand for the purification of trimming glucosidase I. FEBS Lett 278:167–170PubMedCrossRefGoogle Scholar
  5. Bause E, Schweden J, Gross A, Orthen B (1989) Purification and characterization of trimming glucosidase I from pig liver. Eur J Biochem 183:661–669PubMedCrossRefGoogle Scholar
  6. Chang J, Schul W, Butters TD, Yip A, Liu B, Goh A, Lakshminarayana SB, Alonzi D, Reinkensmeier G, Pan X, Qu X, Weidner JM, Wang L, Yu W, Borune N, Kinch MA, Rayahin JE, Moriarty R, Xu X, Shi PY, Guo JT, Block TM (2011) Combination of alpha-glucosidase inhibitor and ribavirin for the treatment of dengue virus infection in vitro and in vivo. Antiviral Res 89:26–34PubMedCentralPubMedCrossRefGoogle Scholar
  7. Chen WW, Lennarz WJ (1978) Enzymatic excision of glucosyl units linked to the oligosaccharide chains of glycoproteins. J Biol Chem 253:5780–5785PubMedGoogle Scholar
  8. De Praeter CM, Gerwig GJ, Bause E, Nuytinck LK, Vliegenthart JF, Breuer W, Kamerling JP, Espeel MF, Martin JJ, De Paepe AM, Chan NW, Dacremont GA, Van Coster RN (2000) A novel disorder caused by defective biosynthesis of N-linked oligosaccharides due to glucosidase I deficiency. Am J Hum Genet 66:1744–1756PubMedCentralPubMedCrossRefGoogle Scholar
  9. Dhanawansa R, Faridmoayer A, van der Merwe G, Li YX, Scaman CH (2002) Overexpression, purification, and partial characterization of Saccharomyces cerevisiae processing alpha glucosidase I. Glycobiology 12:229–234PubMedCrossRefGoogle Scholar
  10. Durantel D (2009) Celgosivir, an alpha-glucosidase I inhibitor for the potential treatment of HCV infection. Curr Opin Investig Drugs 10:860–870PubMedGoogle Scholar
  11. Durantel D, Alotte C, Zoulim F (2007) Glucosidase inhibitors as antiviral agents for hepatitis B and C. Curr Opin Investig Drugs 8:125–129PubMedGoogle Scholar
  12. Elbein AD (1991) Glycosidase inhibitors as antiviral and/or antitumor agents. Semin Cell Biol 2:309–317PubMedGoogle Scholar
  13. Elbein AD, Mitchell M, Sanford BA, Fellows LE, Evans SV (1984) The pyrrolidine alkaloid, 2,5-dihydroxymethyl-3,4-dihydroxypyrrolidine, inhibits glycoprotein processing. J Biol Chem 259:12409–12413PubMedGoogle Scholar
  14. Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280(Pt 2):309–316PubMedGoogle Scholar
  15. Herscovics A (1999) Processing glycosidases of Saccharomyces cerevisiae. Biochim Biophys Acta 1426:275–285PubMedCrossRefGoogle Scholar
  16. Herscovics A, Bugge B, Jeanloz RW (1977) Glucosyltransferase activity in calf pancreas microsomes. Formation of dolichyl D[14C]glucosyl phosphate and 14C-labeled lipid-linked oligosaccharides from UDP-D-[14C]glucose. J Biol Chem 252:2271–2277PubMedGoogle Scholar
  17. Hettkamp H, Bause E, Legler G (1982) Inhibition by nojirimycin and 1-deoxynojirimycin of microsomal glucosidases from calf liver acting on the glycoprotein oligosaccharides Glc1-3Man9GlcNAc2. Biosci Rep 2:899–906PubMedCrossRefGoogle Scholar
  18. Hettkamp H, Legler G, Bause E (1984) Purification by affinity chromatography of glucosidase I, an endoplasmic reticulum hydrolase involved in the processing of asparagine-linked oligosaccharides. Eur J Biochem 142:85–90PubMedCrossRefGoogle Scholar
  19. Hong Y, Sundaram S, Shin DJ, Stanley P (2004) The Lec23 Chinese hamster ovary mutant is a sensitive host for detecting mutations in alpha-glucosidase I that give rise to congenital disorder of glycosylation IIb (CDG IIb). J Biol Chem 279:49894–49901PubMedCrossRefGoogle Scholar
  20. Kalz-Fuller B, Bieberich E, Bause E (1995) Cloning and expression of glucosidase I from human hippocampus. Eur J Biochem 231:344–351PubMedCrossRefGoogle Scholar
  21. Karpas A, Fleet GW, Dwek RA, Petursson S, Namgoong SK, Ramsden NG, Jacob GS, Rademacher TW (1988) Aminosugar derivatives as potential anti-human immunodeficiency virus agents. Proc Natl Acad Sci USA 85:9229–9233PubMedCrossRefGoogle Scholar
  22. Khan FA, Varma GM, Vijay IK (1999) Genomic organization and promoter activity of glucosidase I gene. Glycobiology 9:797–806PubMedCrossRefGoogle Scholar
  23. Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664PubMedCrossRefGoogle Scholar
  24. Kurakata Y, Uechi A, Yoshida H, Kamitori S, Sakano Y, Nishikawa A, Tonozuka T (2008) Structural insights into the substrate specificity and function of Escherichia coli K12 YgjK, a glucosidase belonging to the glycoside hydrolase family 63. J Mol Biol 381:116–128PubMedCrossRefGoogle Scholar
  25. Li E, Tabas I, Kornfeld S (1978) The synthesis of complex-type oligosaccharides. I. Structure of the lipid-linked oligosaccharide precursor of the complex-type oligosaccharides of the vesicular stomatitis virus G protein. J Biol Chem 253:7762–7770PubMedGoogle Scholar
  26. Michael JM, Kornfeld S (1980) Partial purification and characterization of the glucosidases involved in the processing of asparagine-linked oligosaccharides. Arch Biochem Biophys 199:249–258PubMedCrossRefGoogle Scholar
  27. Neverova I, Scaman CH, Srivastava OP, Szweda R, Vijay IK, Palcic MM (1994) A spectrophotometric assay for glucosidase I. Anal Biochem 222:190–195PubMedCrossRefGoogle Scholar
  28. Palcic MM, Scaman CH, Otter A, Szpacenko A, Romaniouk A, Li YX, Vijay IK (1999) Processing alpha-glucosidase I is an inverting glycosidase. Glycoconj J 16:351–355PubMedCrossRefGoogle Scholar
  29. Pan YT, Hori H, Saul R, Sanford BA, Molyneux RJ, Elbein AD (1983) Castanospermine inhibits the processing of the oligosaccharide portion of the influenza viral hemagglutinin. Biochemistry 22:3975–3984PubMedCrossRefGoogle Scholar
  30. Pukazhenthi BS, Muniappa N, Vijay IK (1993) Role of sulfhydryl groups in the function of glucosidase I from mammary gland. J Biol Chem 268:6445–6452PubMedGoogle Scholar
  31. Qu X, Pan X, Weidner J, Yu W, Alonzi D, Xu X, Butters T, Block T, Guo JT, Chang J (2011) Inhibitors of endoplasmic reticulum alpha-glucosidases potently suppress hepatitis C virus virion assembly and release. Antimicrob Agents Chemother 55:1036–1044PubMedCentralPubMedCrossRefGoogle Scholar
  32. Ray MK, Yang J, Sundaram S, Stanley P (1991) A novel glycosylation phenotype expressed by Lec23, a Chinese hamster ovary mutant deficient in alpha-glucosidase I. J Biol Chem 266:22818–22825PubMedGoogle Scholar
  33. Romaniouk A, Vijay IK (1997) Structure-function relationships in glucosidase I: amino acids involved in binding the substrate to the enzyme. Glycobiology 7:399–404PubMedCrossRefGoogle Scholar
  34. Shailubhai K, Pratta MA, Vijay IK (1987) Purification and characterization of glucosidase I involved in N-linked glycoprotein processing in bovine mammary gland. Biochem J 247:555–562PubMedGoogle Scholar
  35. Shailubhai K, Pukazhenthi BS, Saxena ES, Varma GM, Vijay IK (1991) Glucosidase I, a transmembrane endoplasmic reticular glycoprotein with a luminal catalytic domain. J Biol Chem 266:16587–16593PubMedGoogle Scholar
  36. Shailubhai K, Saxena ES, Balapure AK, Vijay IK (1990) Developmental regulation of glucosidase I, an enzyme involved in the processing of asparagine-linked glycoproteins in rat mammary gland. J Biol Chem 265:9701–9706PubMedGoogle Scholar
  37. Spiro RG, Spiro MJ, Bhoyroo VD (1979) Processing of carbohydrate units of glycoproteins. Characterization of a thyroid glucosidase. J Biol Chem 254:7659–7667PubMedGoogle Scholar
  38. Tsuruoka T, Fukuyasu H, Ishii M, Usui T, Shibahara S, Inouye S (1996) Inhibition of mouse tumor metastasis with nojirimycin-related compounds. J Antibiot (Tokyo) 49:155–161CrossRefGoogle Scholar
  39. Ugalde RA, Staneloni RJ, Leloir LF (1980) Microsomal glucosidases of rat liver. Partial purification and inhibition by disaccharides. Eur J Biochem 113:97–103PubMedCrossRefGoogle Scholar
  40. Volker C, De Praeter CM, Hardt B, Breuer W, Kalz-Fuller B, Van Coster RN, Bause E (2002) Processing of N-linked carbohydrate chains in a patient with glucosidase I deficiency (CDG type IIb). Glycobiology 12:473–483PubMedCrossRefGoogle Scholar
  41. Waechter CJ, Lennarz WJ (1976) The role of polyprenol-linked sugars in glycoprotein synthesis. Annu Rev Biochem 45:95–112PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Complex Carbohydrate Research CenterThe University of GeorgiaAthensUSA

Personalised recommendations