Advertisement

Enzymes Isolated from Alkaliphiles

  • Koki Horikoshi

Studies of alkaliphiles have led to the discovery of many types of enzymes that exhibit interesting properties. The first report concerning an alkaline enzyme published in 1971 described an alkaline protease produced by Bacillus clausii 221. Since that time hundreds of new enzymes have been isolated in many laboratories. Some of these have been produced on an industrial scale and commercialized.

Alkaline Protease

Isolation of Alkaline Protease

In 1971, Horikoshi (Horikoshi 1971a) reported the production of an extracellular alkaline serine protease from alkaliphilic Bacillus clausii 221 ( Fig. 2.8.1). This strain, isolated from soil, produced large amounts of alkaline protease that differed from the subtilisin group. The optimum pH of the purified enzyme was 11.5 with 75% of the activity maintained at pH 13. The enzyme was completely inhibited by diisopropylfluorophosphate or 6 M urea, but not by ethylenediamine tetraacetic acid or p-chloromercuribenzoate. The molecular weight of the...

Keywords

Alkaline Protease Laundry Detergent Alkaliphilic Bacillus Bacillus Halodurans Detergent Additive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abelyan VA, Yamamoto T, Afrikyan EG (1994a) Isolation and characterization of cyclomaltodextrin glucanotransferases using cyclodextrin polymers and their derivatives. Biochemistry 59:573–579, Engl TrGoogle Scholar
  2. Abelyan VA, Yamamoto T, Afrikyan EG (1994b) On the mechanism of action of cyclomaltodextrin glucotransferases of alkalophilic, thermophilic, and mesophilic microorganisms. Biochemistry 59:839–844, Engl TrGoogle Scholar
  3. Akino T, Nakamura N, Horikoshi K (1987) Production of β-mannanase by an alkalophilic Bacillus sp. Appl Microbiol Biotechnol 26:323–327CrossRefGoogle Scholar
  4. Akino T, Nakamura N, Horikoshi K (1988a) Characterization of three β-mannanases of an alkalophilic Bacillus sp. Agric Biol Chem 52:773–779CrossRefGoogle Scholar
  5. Akino T, Nakamura N, Horikoshi K (1988b) Characterization of β-Mannosidase of an Alkalophilic Bacillus sp. Agric Biol Chem 52:1459–1464CrossRefGoogle Scholar
  6. Ara K, Igarashi K, Saeki K, Kawai S, Ito S (1992) Purification and some properties of an alkaline pullulanase from alkalphilic Bacillus sp. KSM-1876. Biosci Biotechnol Biochem 56:62–65CrossRefGoogle Scholar
  7. Ara K, Igarashi K, Saeki K, Ito S (1995) An alkaline amylopullulanase from alkalophilic Bacillus sp KSM-1378; Kinetic evidence for two independent active sites for the α-1, 4 and α-1, 6 hydrolytic reactions. Biosci Biotechnol Biochem 59:662–666CrossRefGoogle Scholar
  8. Ara K, Igarashi K, Hagihara H, Sawada K, Kobayashi T, Ito S (1996) Separation of functional domains for the α-1, 4 and α-1, 6 hydrolytic activities of a Bacillus amylopullulanase by limited proteolysis with papain. Biosci Biotechnol Biochem 60:634–639PubMedCrossRefGoogle Scholar
  9. Aunstrup K, Ottrup H, Andresen O, Dambmann C (1972) Proteases from alkalophilic Bacillus species. In: Proceedings of the 4th international fermentation symposium. Society of Fermentation Technology, Kyoto, pp 299–305Google Scholar
  10. Blanco A, Vidal T, Colom JF, Pastor FIJ (1995) Purification and properties of xylanase A from alkali-tolerant Bacillus sp strain BP-23. Appl Environ Microbiol 61:4468–4470PubMedGoogle Scholar
  11. Boyer EW, Ingle MB (1972) Extracellular alkaline amylase from a Bacillus species. J Bacteriol 110:992–1000PubMedGoogle Scholar
  12. Boyer EW, Ingle MB, Mercer GD (1973) Bacillus alcalophilus subsp. halodurans subsp. nov.: An alkaline-amylase-producing alkalophilic organisms. Int J Syst Bacteriol 23:238–242CrossRefGoogle Scholar
  13. Cao J, Zheng L, Chen S (1992) Screening of pectinase producer from alkalophilic bacteria and study on its potential application in degumming of ramie. Enzyme Microb Technol 14:1013–1016CrossRefGoogle Scholar
  14. Cheng SW, Hu HM, Shen SW, Takagi H, Asano M, Tsai YC (1995) Production and characterization of keratinase of a feather-degrading Bacillus licheniformis PWD-1. Biosci Biotechnol Biochem 59:2239–2243PubMedCrossRefGoogle Scholar
  15. Dey D, Hinge J, Shendye A, Rao M (1992) Purification and properties of extracellular endoxylanases from alkalophilic thermophilic Bacillus sp. Can J Microbiol 38:436–442CrossRefGoogle Scholar
  16. Fogarty WM, Ward PO (1977) Pectinases and pectic polysaccharides. Churchill Livingstone, Edinburgh and LondonGoogle Scholar
  17. Fujiwara N, Masui A, Imanaka T (1993) Purification and Properties of the Highly Thermostable Alkaline Protease from an Alkaliphilic and Thermophilic Bacillus sp. J Biotechnol 30:245–256PubMedCrossRefGoogle Scholar
  18. Fukumori F, Kudo T, Horikoshi K (1985) Purification and Properties of a Cellulase from Alkalophilic Bacillus sp. No. 1139. J Gen Microbiol 131:3339–3345Google Scholar
  19. Gallardo O, Diaz P, Pastor FIJ (2004) Cloning and characterization of xylanase A from the strain Bacillus sp BP-7: Comparison with alkaline pI-low molecular weight xylanases of family 11. Curr Microbiol 48:276–279PubMedCrossRefGoogle Scholar
  20. Garg AP, Mccarthy AJ, Roberts JC (1996) Biobleaching effect of Streptomyces thermoviolaceus xylanase preparations on birchwood kraft pulp. Enzyme Microb Technol 18:261–267CrossRefGoogle Scholar
  21. Garg AP, Roberts JC, McCarthy AJ (1998) Bleach boosting effect of cellulase-free xylanase of Streptomyces thermoviolaceus and its comparison with two commercial enzyme preparations on birchwood kraft pulp. Enzyme Microb Technol 22:594–598CrossRefGoogle Scholar
  22. Haga K, Kanai R, Sakamoto O, Aoyagi M, Harata K (2003) Yamane K (2003) Effects of essential carbohydrate/aromatic stacking interaction with Tyr100 and Phe259 on substrate binding of cyclodextrin glycosyltransferase from alkalophilic Bacillus sp. 1011. J Biochem (Tokyo) 134:881–891CrossRefGoogle Scholar
  23. Hagihara H, Hayashi Y, Endo K, Igarashi K, Ozawa T, Kawai S, Ozaki K, Ito S (2001a) Deduced amino-acid sequence of a calcium-free α-amylase from a strain of Bacillus: implications from molecular modeling of high oxidation stability and chelator resistance of the enzyme. Eur J Biochem 268:3974–3982PubMedCrossRefGoogle Scholar
  24. Hagihara H, Igarashi K, Hayashi Y, Endo K, Ikawa-Kitayama K, Ozaki K, Kawai S, Ito S (2001b) Novel α-amylase that is highly resistant to chelating reagents and chemical oxidants from the alkaliphilic Bacillus isolate KSM-K38. Appl Environ Microbiol 67:1744–1750PubMedCrossRefGoogle Scholar
  25. Hamamoto T, Horikoshi K (1987) Alkalophilic Bacillus Xylanase A, a Secretable Protein through Outer Membrane of Escherichia coli. Agric Biol Chem 51:3133–3135CrossRefGoogle Scholar
  26. Han XQ, Damodaran S (1998) Purification and characterization of protease Q: A detergent- and urea-stable serine endopeptidase from Bacillus pumilus. J Agr Food Chem 46:3596–3603CrossRefGoogle Scholar
  27. Hatada Y, Igarashi K, Ozaki K, Ara K, Hitomi J, Kobayashi T, Kawai S, Watabe T, Ito S (1996) Amino acid sequence and molecular structure of an alkaline amylopullulanase from Bacillus that hydrolyzes α-1, 4 and α-1, 6 linkages in polysaccharides at different active sites. J Biol Chem 271:24075–24083PubMedCrossRefGoogle Scholar
  28. Hayashi T, Akiba T, Horikoshi K (1988a) Production and purification of New Maltohexaose-forming Amylases from Alkalophilic Bacillus sp. H-167. Agric Biol Chem 52:443–448CrossRefGoogle Scholar
  29. Hayashi T, Akiba T, Horikoshi K (1988b) Properties of new alkaline maltohexaose-forming amylases. Appl Microbiol Biotechnol 28:281–285CrossRefGoogle Scholar
  30. Honda H, Kudo T, Ikura Y, Horikoshi K (1985a) Two Types of Xylanases of Alkalophilic Bacillus sp. No.C-125. Can J Microbiol 31:538–542CrossRefGoogle Scholar
  31. Honda H, Kudo T, Horikoshi K (1985b) Molecular Cloning and Expression of Xylanase Gene of Alkalophilic Bacillus sp. Strain C-125 in Escherichia coli. J Bacteriol 161:784–785PubMedGoogle Scholar
  32. Honda H, Kudo T, Horikoshi K (1985c) Purification and Partial Characterzation of Alkaline Xylanase from Escherichia coli Carrying pCX311. Agric Biol Chem 49:3165–3169CrossRefGoogle Scholar
  33. Honda H, Kudo T, Horikoshi K (1986a) Extracellular Production of Alkaline Xylanase of Alkalophilic Bacillus sp. by Escherichia coli Carrying pCX311. J Ferment Technol 64:373–377CrossRefGoogle Scholar
  34. Honda H, Kudo T, Horikoshi K (1986b) Production of Extracellular Alkaline Xylanase of Alkalophilic Bacillus sp. C-125 by Escherichia coli Carrying pCX 311. Syst Appl Microbiol 8:152–157CrossRefGoogle Scholar
  35. Horikoshi K (1971a) Production of Alkaline Enzymes by Alkalophilic Microorganisms. Part I. Alkaline Protease Produced by Bacillus No. 221. Agric Biol Chem 36:1407–1414CrossRefGoogle Scholar
  36. Horikoshi K (1971b) Production of Alkaline Enzymes by Alkalophilic Microorganisms. Part II. Alkaline Amylase Produced by Bacillus No.A-40-2. Agric Biol Chem 35:1783–1791CrossRefGoogle Scholar
  37. Horikoshi K (1972) Production of Alkaline Enzymes by Alkalophilic Microorganisms. Part III. Alkaline Pectinase of Bacillus No.P-4-N. Agric Biol Chem 36:285–293CrossRefGoogle Scholar
  38. Horikoshi K, Atsukawa Y (1973) Xylanase Produced by Alkalophilic Bacillus No.C-59-2. Agric Biol Chem 37:2097–2103CrossRefGoogle Scholar
  39. Horikoshi K, Nakao M, Kurono Y, Saschihara N (1984) Cellulases of an Alkalophilic Bacillus Strain Isolated from Soil. Can J Microbiol 30:774–779CrossRefGoogle Scholar
  40. Igarashi K, Ara K, Saeki K, Ozaki K, Kawai S, Ito S (1992) Nucleotide sequence of the gene that encodes an neopullulanase from an alkalophilic Bacillus. Biosci Biotechnol Biochem 56:514–516PubMedCrossRefGoogle Scholar
  41. Ito S, Shikata S, Ozaki K, Kawai S, Okamoto KI S, Takei A, Ohta Y, Satoh T (1989) Alkaline cellulase for laundry detergents: Production by Bacillus sp. KSM-635 and enzymatic properties. Agric Biol Chem 53:1275–1281CrossRefGoogle Scholar
  42. Kanai R, Haga K, Akiba T, Yamane K, Harata K (2004) Biochemical and crystallographic analyses of maltohexaose-producing amylase from alkalophilic Bacillus sp 707. Biochemistry 43:14047–14056, UsaPubMedCrossRefGoogle Scholar
  43. Kanai R, Haga K, Akiba T, Yamane K, Harata K (2006) Role of Trp140 at subsite −6 on the maltohexaose production of maltohexaose-producing amylase from alkalophilic Bacillus sp. 707. Protein Sci 15:468–477PubMedCrossRefGoogle Scholar
  44. Kaneko T, Hamamoto T, Horikoshi K (1988) Molecular Cloning and Nucleotide Sequence of the Cyclomaltodextrin Glucanotransferase Gene from the Alkalophilic Bacillus sp. Strain No. 38-2. J Gen Microbiol 134:97–105PubMedGoogle Scholar
  45. Kaneko R, Koyama N, Tsai YC, Jung RY, Yoda K, Yamasaki K (1989) Molecular cloning of the structural gene for alkaline elastase Ya-B, a new subtilisin produced by an alkalophilic Bacillus strain. J Bacteriol 171:5232–5236PubMedGoogle Scholar
  46. Kato T, Horikoshi K (1984) Colorimetric Determination of γ-Cyclodextrin. Anal Chem 56:1738–1740CrossRefGoogle Scholar
  47. Kato T, Horikoshi K (1986) A new γ-cyclodextrin forming enzyme produced by Bacillus subtilis No. 313. J Jpn Soc Starch Sci 33:137–143CrossRefGoogle Scholar
  48. Kelly CT, Fogarty WM (1978) Production and properties of polygalacturonate lyase by an alkalophilic microorganisms, Bacillus sp. RK9. Can J Microbiol 24:1164–1172PubMedCrossRefGoogle Scholar
  49. Kelly CT, O’Reilly F, Fogarty WM (1983) Extracellular α-glucosidase of an alkalophilic microorganism, Bacillus sp. ATCC 21591. FEMS Microbiol Lett 20:55–59Google Scholar
  50. Khasin A, Alchanati I, Shoham Y (1993) Purification and Characterization of a Thermostable Xylanase from Bacillus stearothermophilus T-6. Appl Environ Microbiol 59:1725–1730PubMedGoogle Scholar
  51. Kim CH, Kim YS (1995) Substrate specificity and detailed characterization of a bifunctional amylase pullulanase enzyme from Bacillus circulans F-2 having two different active sites on one polypeptide. Eur J Biochem 227:687–693PubMedCrossRefGoogle Scholar
  52. Kim CH, Choi HI, Lee DS (1993a) Pullulanases of Alkaline and Broad pH Range from a Newly Isolated Alkalophilic Bacillus sp S-1 and a Micrococcus sp Y-1. J Ind Microbiol 12:48–57CrossRefGoogle Scholar
  53. Kim CH, Choi HI, Lee DS (1993b) Purification and Biochemical Properties of an Alkaline Pullulanase from Alkalophilic Bacillus sp S-1. Biosci Biotechnol Biochem 57:1632–1637PubMedCrossRefGoogle Scholar
  54. Kimura T, Horikoshi K (1988) Isolation of Bacteria Which Can Grow at Both High pH and Low Temperature. Appl Environ Microbiol 54:1066–1067PubMedGoogle Scholar
  55. Kimura K, Takano T, Yamane K (1987a) Molecular cloning of the β-cyclodextrin synthetase gene from an alkaliphilic Bacillus and its expression in Escherichia coli and Bacillus subtilis. Appl Microbiol Biotechnol 26:147–153CrossRefGoogle Scholar
  56. Kimura K, Kataoka S, Ishii Y, Takano T, Yamane K (1987b) Nucleotide sequence of the β-cyclodextrin glucanotransferase gene of alkalophilic Bacillus sp. strain 1011 and similarity of its amino acid sequence to those of α-amylases. J Bacteriol 169:4399–4402PubMedGoogle Scholar
  57. Kimura K, Tsukamoto A, Ishii Y, Takano T, Yamane K (1988) Cloning of a gene for maltohexhaose producing amylase of an alkalophilic Bacillus and hyper-production of the enzyme in Bacillus subtilis cells. Appl Microbiol Biotechnol 27:372–377CrossRefGoogle Scholar
  58. Lin LL, Tsau MR, Chu WS (1996) Purification and properties of a 140 kDa amylopullulanase from thermophilic and alkaliphilic Bacillus sp strain TS-23. Biotechnol Appl Biochem 24(Part 2):101–107Google Scholar
  59. Lin LL, Lo HF, Chiang WY, Hu HY, Hsu WH, Chang CT (2003) Replacement of methionine 208 in a truncated Bacillus sp TS-23 at α-amylase with oxidation-resistant leucine enhances its resistance to hydrogen peroxide. Curr Microbiol 46:211–216PubMedCrossRefGoogle Scholar
  60. Lo HF, Lin LL, Chen HL, Hsu WH, Chang CT (2001a) Enzymic properties of a SDS-resistant Bacillus sp TS-23 α-amylase produced by recombinant Escherichia coli. Process Biochem 36:743–750CrossRefGoogle Scholar
  61. Lo HF, Lin LL, Li CC, Hsu WH, Chang CT (2001b) The N-terminal signal sequence and the last 98 amino acids are not essential for the secretion of Bacillus sp TS-23 α-amylase in Escherichia coli. Curr Microbiol 43:170–175PubMedCrossRefGoogle Scholar
  62. Murakami S, Nishimoto H, Toyama Y, Shimamoto E, Takenaka S, Kaulpiboon J, Prousoontorn M, Limpaseni T, Pongsawasdi P, Aoki K (2007) Purification and characterization of two alkaline, thermotolerant α-amylases from Bacillus halodurans 38C-2-1 and expression of the cloned gene in Escherichia coli. Biosci Biotechnol Biochem 71:2393–2401PubMedCrossRefGoogle Scholar
  63. Nakamura N, Horikoshi K (1976a) Characterization of Acid-cyclodextrin Glycosyl-transferase of an Alkalophilic Bacillus sp. Agric Biol Chem 40:1647–1648CrossRefGoogle Scholar
  64. Nakamura N, Horikoshi K (1976b) Characterization and some Culture Conditions of a Cyclodextrin Glycosyltransferase-Producing Alkalophilic Bacillus sp. Agric Biol Chem 40:753–757CrossRefGoogle Scholar
  65. Nakamura N, Horikoshi K (1976c) Purification and Properties of Cyclodextrin Glycosyltransferase of an Alkalophilic Bacillus sp. Agric Biol Chem 40:935–941CrossRefGoogle Scholar
  66. Nakamura N, Horikoshi K (1976d) Purification and Properties of Neutral- cyclodextrin Glycosyl-transferase of an Alkalophilic Bacillus sp. Agric Biol Chem 40:1785–1791CrossRefGoogle Scholar
  67. Nakamura N, Watanabe K, Horikoshi K (1975) Purification some Properties of Alkaline Pullulanase from a Strain of Bacillus No.202-1, an Alkalophilic Microorganism. Biochim Biophys Acta 397:188–193PubMedCrossRefGoogle Scholar
  68. Nakamura A, Fukumori F, Horinouchi S, Masaki H, Kudo T, Uozumi T, Horikoshi K, Beppu T (1991) Construction and Characterization of the Chimeric Enzymes between the Bacillus subtilis Cellulase and an Alkalophilic Bacillus Cellulase. J Biol Chem 266:1579–1583PubMedGoogle Scholar
  69. Nakamura S, Wakabayashi K, Nakai R, Aono R, Horikoshi K (1993a) Production of alkaline xylanase by a newly isolated alkaliphilic Bacillus sp. strain 41M-1. World J Microbiol Biotechnol 9:221–224CrossRefGoogle Scholar
  70. Nakamura S, Wakabayashi K, Nakai R, Aono R, Horikoshi K (1993b) Purification and some properties of an alkaline xylanase from alkaliphilic Bacillus sp. strain 41M-1. Appl Environ Microbiol 59:2311–2316PubMedGoogle Scholar
  71. Nakamura S, Nakai R, Wakabayashi K, Ishiguro Y, Aono R, Horikoshi K (1994) Thermophilic alkaline xylanase from newly isolated alkaliphilic and thermophilic Bacillus sp. strain TAR-1. Biosci Biotechnol Biochem 58:78–81CrossRefGoogle Scholar
  72. Nakamura S, Nakai R, Namba K, Kubo T, Wakabayashi K, Aono R, Horikoshi K (1995) Structure-function relationship of the xylanase from alkaliphilic Bacillus sp. strain 41M-1. Nucleic Acids Symp Ser 34:99–100PubMedGoogle Scholar
  73. Nomoto M, Lee T-C, Su C-S, Liao C-W, Yen T-M, Yang C-P (1984) Alkaline proteinases from alkalophilic bacteria of Taiwan. Agric Biol Chem 48:1627–1628CrossRefGoogle Scholar
  74. Nomoto M, Chen C-C, Shen D-C (1986) Purification and characterization of cyclodextrin glucanotransferase from an alkalophilic bacterium of Taiwan. Agric Biol Chem 50:2701–2707CrossRefGoogle Scholar
  75. Okazaki W, Akiba T, Horikoshi K, Akahoshi R (1984) Production and Properties of Two Types of Xylanases from Alkalophilic Thermophilic Bacillus sp. Appl Microbiol Biotechnol 19:335–340CrossRefGoogle Scholar
  76. Okazaki W, Akiba T, Horikoshi K, Akahoshi R (1985) Purification and Characterization of Xylanases from Alkalophilic Thermophilic Bacillus spp. Agric Biol Chem 49:2033–2039CrossRefGoogle Scholar
  77. Park J-S, Horinouchi S, Beppu T (1991) Characterization of leader peptide of an endo-type cellulase produced by an alkalophilic Streptomyces strain. Agric Biol Chem 55:1745–1750PubMedCrossRefGoogle Scholar
  78. Saeki K, Okuda M, Hatada Y, Kobayashi T, Ito S, Takami H, Horikoshi K (2000) Novel oxidatively stable subtilisin-like serine proteases from alkaliphilic Bacillus spp.: Enzymatic properties, sequences, and evolutionary relationships. Biochem Biophys Res Commun 279:313–319PubMedCrossRefGoogle Scholar
  79. Saeki K, Hitomi J, Okuda M, Hatada Y, Kageyama Y, Takaiwa M, Kubota H, Hagihara H, Kobayashi T, Kawai S, Ito S (2002) A novel species of alkaliphilic Bacillus that produces an oxidatively stable alkaline serine protease. Extremophiles 6:65–72PubMedCrossRefGoogle Scholar
  80. Sashihara N, Kudo T, Horikoshi K (1984) Molecular Cloning and Expression of Cellulase Genes of Alkalophilic Bacillus sp. Strain N-4 in Escherichia coli. J Bacteriol 158:503–506PubMedGoogle Scholar
  81. Shirokizawa O, Akiba T, Horikoshi K (1989) Cloning and Expression of the Maltohexaose-forming Amylase Gene from Alkalophilc Bacillus sp. H-167 in Escherichia coli. Agric Biol Chem 53:491–495CrossRefGoogle Scholar
  82. Shirokizawa O, Akiba T, Horikoshi K (1990) Nucleotide sequence of the G6-amylase gene from alkalophilic Bacillus sp. H-167. FEMS Microbiol Lett 70:131–136Google Scholar
  83. Takada M, Nakagawa Y, Yamamoto M (2003) Biochemical and Genetic Analyses of a Novel γ-Cyclodextrin Glucanotransferase from an Alkalophilic Bacillus clarkii 7364. J Biochem 133:317–324PubMedCrossRefGoogle Scholar
  84. Takami H, Akiba T, Horikoshi K (1989) Production of extremely thermostable alkaline protease from Bacillus sp. no. AH-101. Appl Microbiol Biotechnol 30:120–124CrossRefGoogle Scholar
  85. Takami H, Akiba T, Horikoshi K (1990) Characterization of an alkaline protease from Bacillus sp. no. AH-101. Appl Microbiol Biotechnol 33:519–523PubMedCrossRefGoogle Scholar
  86. Takami H, Akiba T, Horikoshi K (1992) Substrate Specificity of Thermostable Alkaline Protease from Bacillus sp. No.AH-101. Biosci Biotechnol Biochem 56:333–334PubMedCrossRefGoogle Scholar
  87. Takami H, Nakasone K, Takaki Y, Maeno G, Sasaki R, Masui N, Fuji F, Hirama C, Nakamura Y, Ogasawaral N, Kuhara S, Horikoshi K (2000) Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res 28:4317–4331PubMedCrossRefGoogle Scholar
  88. Tanabe H, Yoshihara K, Tamura K, Kobayashi Y, Akamatsu I, Niyomwan N, Footrakul P (1987) Pretreatment of pectic wastewater from orange canning process by an alkalophilic Bacillus sp. J Ferment Technol 65:243–246CrossRefGoogle Scholar
  89. Tanabe H, Kobayashi Y, Akamatsu I (1988) Pretreatment of pectic wastewater with pectate lyase from an alkalophilic Bacillus sp. Agric Biol Chem 52:1855–1856CrossRefGoogle Scholar
  90. Tsai Y, Yamasaki M, Yamamoto-Suzuki Y, Tamura G (1983) A new alkaline elastase of an alkalophilic Bacillus. Biochem Int 7:577–583PubMedGoogle Scholar
  91. Tsai Y, Yamasaki M, Tamura G (1984) Substrate specificity of a new alkaline elastase from an alkalophilic Bacillus. Biochem Int 8:283–288PubMedGoogle Scholar
  92. Tsai Y, Lin S, Li Y, Yamasaki M, Tamura G (1986) Characterization of an alkaline elastase from alkalophilic Bacillus Ya-B. Biochim Biophys Acta 883:439–447CrossRefGoogle Scholar
  93. Yamamoto M, Tanaka Y, Horikoshi K (1972) Alkaline Amylases of Alkalophilic Bacteria. Agric Biol Chem 36:1819–1823CrossRefGoogle Scholar
  94. Yoshihara K, Kobayashi Y (1982) Retting of Mitsumata bast by alkalophilic Bacillus in paper making. Agric Biol Chem 46:109–117CrossRefGoogle Scholar
  95. Yoshimatsu T, Ozaki K, Shikata S, Ohta Y, Koike K, Kawai S, Ito S (1990) Purification and characterization of alkaline endo-1, 4-β-glucanases from alkalophilic Bacillus sp. KSM-635. J Gen Micriobiol 136:1973–1979Google Scholar
  96. Zaghloul TI, AlBahra M, AlAzmeh H (1998) Isolation, identification, and keratinolytic activity of several feather-degrading bacterial isolates. Appl Biochem Biotechnol 70(2):207–213CrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.Japan Agency for Marine-Earth Science and Technology (JAMSTEC)YokohamaJapan

Personalised recommendations