Advertisement

Bioenergetics: Cell Motility and Chemotaxis of Extreme Alkaliphiles

  • Masahiro Ito
  • Shun Fujinami
  • Naoya Terahara

Preface

Alkaliphilic microorganisms are extremophiles that actively grow in an extremely alkaline environment and generally require sodium ions for growth (Krulwich 1995; Krulwich et al. 2007). There are many interesting and unresolved issues with respect to how alkaliphilic microorganisms adapt to their extremely alkaline environment (see also  Chap. 2.5 General Physiology of Alkaliphiles). The mechanisms of this adaptation have been most extensively studied in Bacillus species. Data have been presented for the roles of Na+/H+ antiporters, which are present in the cell membrane, and of a barrier of negatively charged cell wall-associated macromolecules in the accommodation of the bacteria to the alkaline environment (Aono et al. 1995; Ito et al. 2004b; Krulwich et al. 2007; Krulwich et al. 2001b; Padan et al. 2005).

A sodium ion circuit through the cell membrane plays a critical role for adaptation of alkaliphilic Bacillus species grown at high pH. Na +/H +antiporters can accomplish...

Keywords

Bacillus Species Proton Motive Force Alkaliphilic Bacillus Chemotaxis Protein Flagellar Motor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Work conducted in the authors’ laboratories was supported by Grant-in-Aid for Scientific Research (C) (17613004) and (B) (21370074) from the Ministry of Education, Culture, Sports Sciences and Technology of Japan, and by a Grant for Basic Science Research Projects from the Sumitomo Foundation and from the Kurata Memorial Foundation for Promoting Science (to M.I.) and a JSPS Research Fellowships for Young Scientists (to N.T.).

References

  1. Aizawa S, Zhulin IB, Marquez-Magana L, Ordal GW (2002) Chemotaxis and motility. In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and its closest relatives from genes to cells. ASM Press, Washington, pp 437–452Google Scholar
  2. Aono R, Ito M, Joblin KN, Horikoshi K (1995) A high cell wall negative charge is necessary for the growth of the alkaliphile Bacillus lentus C-125 at elevated pH. Microbiology 141:2955–2964CrossRefGoogle Scholar
  3. Aono R, Ogino H, Horikoshi K (1992) pH-dependent flagella formation by facultative alkaliphilic Bacillus sp. C-125. Biosci Biotechnol Biochem 56:48–53PubMedCrossRefGoogle Scholar
  4. Asai Y, Kojima S, Kato H, Nishioka N, Kawagishi I, Homma M (1997) Putative channel components for the fast-rotating sodium-driven flagellar motor of a marine bacterium. J Bacteriol 179:5104–5110PubMedGoogle Scholar
  5. Berg HC (2003) The rotary motor of bacterial flagella. Annu Rev Biochem 72:19–54PubMedCrossRefGoogle Scholar
  6. Bischoff DS, Bourret RB, Kirsch ML, Ordal GW (1993) Purification and characterization of Bacillus subtilis CheY. Biochemistry 32:9256–9261PubMedCrossRefGoogle Scholar
  7. Bischoff DS, Ordal GW (1992) Bacillus subtilis chemotaxis: a deviation from the Escherichia coli paradigm. Mol Microbiol 6:23–8PubMedCrossRefGoogle Scholar
  8. Blair DF (1995) How bacteria sense and swim. Annu Rev Microbiol 49:489–522PubMedCrossRefGoogle Scholar
  9. Blair DF, Berg HC (1990) The MotA protein of E. coli is a proton-conducting component of the flagellar motor. Cell 60:439–49PubMedCrossRefGoogle Scholar
  10. Block SM, Berg HC (1984) Successive incorporation of force-generating units in the bacterial rotary motor. Nature 309:470–2PubMedCrossRefGoogle Scholar
  11. Brown PN, Hill CP, Blair DF (2002) Crystal structure of the middle and C-terminal domains of the flagellar rotor protein FliG. EMBO J 21:3225–3234PubMedCrossRefGoogle Scholar
  12. Brown PN, Mathews MA, Joss LA, Hill CP, Blair DF (2005) Crystal structure of the flagellar rotor protein FliN from Thermotoga maritima. J Bacteriol 187:2890–2902PubMedCrossRefGoogle Scholar
  13. Burgess-Cassler A, Ordal GW (1982) Functional homology of Bacillus subtilis methyltransferase II and Escherichia coli cheR protein. J Biol Chem 257:12835–12838PubMedGoogle Scholar
  14. Burgess-Cassler A, Ullah AH, Ordal GW (1982) Purification and characterization of Bacillus subtilis methyl-accepting chemotaxis protein methyltransferase II. J Biol Chem 257:8412–8417PubMedGoogle Scholar
  15. Chao X, Muff TJ, Park SY, Zhang S, Pollard AM, Ordal GW, Bilwes AM, Crane BR (2006) A receptor-modifying deamidase in complex with a signaling phosphatase reveals reciprocal regulation. Cell 124:561–571PubMedCrossRefGoogle Scholar
  16. Cheng J, Guffanti AA, Wang W, Krulwich TA, Bechhofer DH (1996) Chromosomal tetA(L) gene of Bacillus subtilis: regulation of expression and physiology of a tetA(L) deletion strain. J Bacteriol 178:2853–2860PubMedGoogle Scholar
  17. Chun SY, Parkinson JS (1988) Bacterial motility: membrane topology of the Escherichia coli MotB protein. Science 239:276–8PubMedCrossRefGoogle Scholar
  18. Dioszeghy Z, Zavodszky P, Namba K, Vonderviszt F (2004) Stabilization of flagellar filaments by HAP2 capping. FEBS Lett 568:105–109PubMedCrossRefGoogle Scholar
  19. Eisenbach M (2007) A hitchhiker’s guide through advances and conceptual changes in chemotaxis. J Cell Physiol 213:574–580PubMedCrossRefGoogle Scholar
  20. Fuhrer DK, Ordal GW (1991) Bacillus subtilis CheN, a homolog of CheA, the central regulator of chemotaxis in Escherichia coli. J Bacteriol 173:7443–7448PubMedGoogle Scholar
  21. Fujinami S, Sato T, Trimmer JS, Spiller BW, Clapham DE, Krulwich TA, Kawagishi I, Ito M (2007a) The voltage-gated Na+ channel NaVBP co-localizes with methyl-accepting chemotaxis protein at cell poles of alkaliphilic Bacillus pseudofirmus OF4. Microbiology 153:4027–4038PubMedCrossRefGoogle Scholar
  22. Fujinami S, Terahara N, Lee S, Ito M (2007b) Na+ and flagella-dependent swimming of alkaliphilic Bacillus pseudofirmus OF4: a basis for poor motility at low pH and enhancement in viscous media in an “up-motile” variant. Arch Microbiol 187:239–247PubMedCrossRefGoogle Scholar
  23. Garrity LF, Ordal GW (1995) Chemotaxis in Bacillus subtilis: how bacteria monitor environmental signals. Pharmacol Ther 68:87–104PubMedCrossRefGoogle Scholar
  24. Grundy FJ, Waters DA, Takova TY, Henkin TM (1993) Identification of genes involved in utilization of acetate and acetoin in Bacillus subtilis. Mol Microbiol 10:259–271PubMedCrossRefGoogle Scholar
  25. Guffanti AA, Finkelthal O, Hicks DB, Falk L, Sidhu A, Garro A, Krulwich TA (1986) Isolation and characterization of new facultatively alkalophilic strains of Bacillus species. J Bacteriol 167:766–773PubMedGoogle Scholar
  26. Hamamoto T, Hashimoto M, Hino M, Kitada M, Seto Y, Kudo T, Horikoshi K (1994) Characterization of a gene responsible for the Na+/H+ antiporter system of alkalophilic Bacillus species strain C-125. Mol Microbiol 14:939–946PubMedCrossRefGoogle Scholar
  27. Henkin TM, Grundy FJ, Nicholson WL, Chambliss GH (1991) Catabolite repression of alpha-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacl and galR repressors. Mol Microbiol 5:575–84PubMedCrossRefGoogle Scholar
  28. Hirota N, Imae Y (1983) Na+-driven flagellar motors of an alkalophilic Bacillus strain YN-1. J Biol Chem 258:10577–10581PubMedGoogle Scholar
  29. Hirota N, Kitada M, Imae Y (1981) Flagellar motors of alkalophilic Bacillus are powered by an electrochemical potential gradient of Na+. FEBS Lett 132:278–280CrossRefGoogle Scholar
  30. Ito M, Guffanti AA, Oudega B, Krulwich TA (1999) mrp, a multigene, multifunctional locus in Bacillus subtilis with roles in resistance to cholate and to Na+ and in pH homeostasis. J Bacteriol 181:2394–2402PubMedGoogle Scholar
  31. Ito M, Hicks DB, Henkin TM, Guffanti AA, Powers BD, Zvi L, Uematsu K, Krulwich TA (2004a) MotPS is the stator-force generator for motility of alkaliphilic Bacillus, and its homologue is a second functional Mot in Bacillus subtilis. Mol Microbiol 53:1035–49PubMedCrossRefGoogle Scholar
  32. Ito M, Terahara N, Fujinami S, Krulwich TA (2005) Properties of motility in Bacillus subtilis powered by the H+-coupled MotAB flagellar stator, Na+-coupled MotPS or hybrid stators MotAS or MotPB. J Mol Biol 352:396–408PubMedCrossRefGoogle Scholar
  33. Ito M, Xu H, Guffanti AA, Wei Y, Zvi L, Clapham DE, Krulwich TA (2004b) The voltage-gated Na+ channel NavBP has a role in motility, chemotaxis, and pH homeostasis of an alkaliphilic Bacillus. Proc Natl Acad Sci USA 101:10566–10571PubMedCrossRefGoogle Scholar
  34. Kageyama Y, Takaki Y, Shimamura S, Nishi S, Nogi Y, Uchimura K, Kobayashi T, Hitomi J, Ozaki K, Kawai S, Ito S, Horikoshi K (2007) Intragenomic diversity of the V1 regions of 16S rRNA genes in high-alkaline protease-producing Bacillus clausii spp. Extremophiles 11:597–603PubMedCrossRefGoogle Scholar
  35. Karatan E, Saulmon MM, Bunn MW, Ordal GW (2001) Phosphorylation of the response regulator CheV is required for adaptation to attractants during Bacillus subtilis chemotaxis. J Biol Chem 276:43618–43626PubMedCrossRefGoogle Scholar
  36. Khan S (1993) Gene to ultrastructure: the case of the flagellar basal body. J Bacteriol 175:2169–74PubMedGoogle Scholar
  37. Khan S, Ivey DM, Krulwich TA (1992) Membrane ultrastructure of alkaliphilic Bacillus species studied by rapid-freeze electron microscopy. J Bacteriol 174:5123–5126PubMedGoogle Scholar
  38. Kirby JR (2009) Chemotaxis-like regulatory systems: unique roles in diverse bacteria. Annu Rev Microbiol 63:45–59PubMedCrossRefGoogle Scholar
  39. Kirby JR, Niewold TB, Maloy S, Ordal GW (2000) CheB is required for behavioural responses to negative stimuli during chemotaxis in Bacillus subtilis. Mol Microbiol 35:44–57PubMedCrossRefGoogle Scholar
  40. Kirsch ML, Zuberi AR, Henner D, Peters PD, Yazdi MA, Ordal GW (1993) Chemotactic methyltransferase promotes adaptation to repellents in Bacillus subtilis. J Biol Chem 268:25350–25356PubMedGoogle Scholar
  41. Kobayashi T, Hakamada Y, Adachi S, Hitomi J, Yoshimatsu T, Koike K, Kawai S, Ito S (1995) Purification and properties of an alkaline protease from alkalophilic Bacillus sp. KSM-K16. Appl Microbiol Biotechnol 43:473–481PubMedCrossRefGoogle Scholar
  42. Kojima S, Blair DF (2004a) The bacterial flagellar motor: structure and function of a complex molecular machine. Int Rev Cytol 233:93–134PubMedCrossRefGoogle Scholar
  43. Kojima S, Blair DF (2004b) Solubilization and purification of the MotA/MotB complex of Escherichia coli. Biochemistry 43:26–34PubMedCrossRefGoogle Scholar
  44. Krikos A, Conley MP, Boyd A, Berg HC, Simon MI (1985) Chimeric chemosensory transducers of Escherichia coli. Proc Natl Acad Sci USA 82:1326–30PubMedCrossRefGoogle Scholar
  45. Krulwich TA (1995) Alkaliphiles: ‘basic’ molecular problems of pH tolerance and bioenergetics. Mol Microbiol 15:403–410PubMedCrossRefGoogle Scholar
  46. Krulwich TA, Hicks DB, Swartz TH, Ito M (2007) “Bioenergetic adaptations that support alkaliphily.” In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, pp 311–329Google Scholar
  47. Krulwich TA, Ito M, Guffanti AA (2001) The Na(+)-dependence of alkaliphily in Bacillus. Biochim Biophys Acta 1505:158–68PubMedCrossRefGoogle Scholar
  48. Kubori T, Shimamoto N, Yamaguchi S, Namba K, Aizawa S (1992) Morphological pathway of flagellar assembly in Salmonella typhimurium. J Mol Biol 226:433–446PubMedCrossRefGoogle Scholar
  49. Kuo SC, Koshland DE Jr (1987) Roles of cheY and cheZ gene products in controlling flagellar rotation in bacterial chemotaxis of Escherichia coli. J Bacteriol 169:1307–1314PubMedGoogle Scholar
  50. Lamanna AC, Ordal GW, Kiessling LL (2005) Large increases in attractant concentration disrupt the polar localization of bacterial chemoreceptors. Mol Microbiol 57:774–785PubMedCrossRefGoogle Scholar
  51. Larsen SH, Reader RW, Kort EN, Tso WW, Adler J (1974) Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli. Nature 249:74–77PubMedCrossRefGoogle Scholar
  52. Lloyd SA, Blair DF (1997) Charged residues of the rotor protein FliG essential for torque generation in the flagellar motor of Escherichia coli. J Mol Biol 266:733–744PubMedCrossRefGoogle Scholar
  53. Lloyd SA, Whitby FG, Blair DF, Hill CP (1999) Structure of the C-terminal domain of FliG, a component of the rotor in the bacterial flagellar motor. Nature 400:472–475PubMedCrossRefGoogle Scholar
  54. Lybarger SR, Maddock JR (2000) Differences in the polar clustering of the high- and low-abundance chemoreceptors of Escherichia coli. Proc Natl Acad Sci USA 97:8057–8062PubMedCrossRefGoogle Scholar
  55. Macnab RM (2003) How bacteria assemble flagella. Annu Rev Microbiol 57:77–100PubMedCrossRefGoogle Scholar
  56. Macnab RM, Ornston MK (1977) Normal-to-curly flagellar transitions and their role in bacterial tumbling. Stabilization of an alternative quaternary structure by mechanical force. J Mol Biol 112:1–30PubMedCrossRefGoogle Scholar
  57. Maddock JR, Shapiro L (1993) Polar location of the chemoreceptor complex in the Escherichia coli cell. Science 259:1717–1723PubMedCrossRefGoogle Scholar
  58. Manson MD, Tedesco P, Berg HC, Harold FM, Van der Drift C (1977) A protonmotive force drives bacterial flagella. Proc Natl Acad Sci USA 74:3060–3064PubMedCrossRefGoogle Scholar
  59. Matsuura S, Shioi J, Imae Y (1977) Motility in Bacillus subtilis driven by an artificial protonmotive force. FEBS Lett 82:187–190CrossRefGoogle Scholar
  60. Matsuura S, Shioi JI, Imae Y, Iida S (1979) Characterization of the Bacillus subtilis motile system driven by an artificially created proton motive force. J Bacteriol 140:28–36PubMedGoogle Scholar
  61. McCarter LL (2005) Multiple modes of motility: a second flagellar system in Escherichia coli. J Bacteriol 187:1207–1209PubMedCrossRefGoogle Scholar
  62. Miller LD, Russell MH, Alexandre G (2009) Diversity in bacterial chemotactic responses and niche adaptation. Adv Appl Microbiol 66:53–75PubMedCrossRefGoogle Scholar
  63. Minamino T, Imae Y, Oosawa F, Kobayashi Y, Oosawa K (2003) Effect of intracellular pH on rotational speed of bacterial flagellar motors. J Bacteriol 185:1190–1194PubMedCrossRefGoogle Scholar
  64. Moreno MS, Schneider BL, Maile RR, Weyler W, Saier MH Jr (2001) Catabolite repression mediated by the CcpA protein in Bacillus subtilis: novel modes of regulation revealed by whole-genome analyses. Mol Microbiol 39:1366–1381PubMedCrossRefGoogle Scholar
  65. Muff TJ, Foster RM, Liu PJ, Ordal GW (2007) CheX in the three-phosphatase system of bacterial chemotaxis. J Bacteriol 189:7007–7013PubMedCrossRefGoogle Scholar
  66. Muff TJ, Ordal GW (2007a) Assays for CheC, FliY, and CheX as representatives of response regulator phosphatases. Methods Enzymol 423:336–348PubMedCrossRefGoogle Scholar
  67. Muff TJ, Ordal GW (2007b) The CheC phosphatase regulates chemotactic adaptation through CheD. J Biol Chem 282:34120–34128PubMedCrossRefGoogle Scholar
  68. Muff TJ, Ordal GW (2008) The diverse CheC-type phosphatases: chemotaxis and beyond. Mol Microbiol 70:1054–61PubMedCrossRefGoogle Scholar
  69. Ottemann KM, Miller JF (1997) Roles for motility in bacterial-host interactions. Mol Microbiol 24:1109–1117PubMedCrossRefGoogle Scholar
  70. Padan E, Bibi E, Ito M, Krulwich TA (2005) Alkaline pH homeostasis in bacteria: New insights. Biochim Biophys Acta 1717:67–88PubMedCrossRefGoogle Scholar
  71. Park KS, Mohapatra DP, Misonou H, Trimmer JS (2006a) Graded regulation of the Kv2.1 potassium channel by variable phosphorylation. Science 313:976–979PubMedCrossRefGoogle Scholar
  72. Park SY, Chao X, Gonzalez-Bonet G, Beel BD, Bilwes AM, Crane BR (2004) Structure and function of an unusual family of protein phosphatases: the bacterial chemotaxis proteins CheC and CheX. Mol Cell 16:563–574PubMedGoogle Scholar
  73. Park SY, Lowder B, Bilwes AM, Blair DF, Crane BR (2006b) Structure of FliM provides insight into assembly of the switch complex in the bacterial flagella motor. Proc Natl Acad Sci USA 103:11886–11891PubMedCrossRefGoogle Scholar
  74. Paulick A, Koerdt A, Lassak J, Huntley S, Wilms I, Narberhaus F, Thormann KM (2009) Two different stator systems drive a single polar flagellum in Shewanella oneidensis MR-1. Mol Microbiol 71:836–850PubMedCrossRefGoogle Scholar
  75. Rao CV, Glekas GD, Ordal GW (2008) The three adaptation systems of Bacillus subtilis chemotaxis. Trends Microbiol 16:480–487PubMedCrossRefGoogle Scholar
  76. Reid SW, Leake MC, Chandler JH, Lo CJ, Armitage JP, Berry RM (2006) The maximum number of torque-generating units in the flagellar motor of Escherichia coli is at least 11. Proc Natl Acad Sci USA 103:8066–71PubMedCrossRefGoogle Scholar
  77. Ren D, Navarro B, Xu H, Yue L, Shi Q, Clapham DE (2001) A prokaryotic voltage-gated sodium channel. Science 294:2372–2375PubMedCrossRefGoogle Scholar
  78. Ridgway HG, Silverman M, Simon MI (1977) Localization of proteins controlling motility and chemotaxis in Escherichia coli. J Bacteriol 132:657–665PubMedGoogle Scholar
  79. Rosario MM, Fredrick KL, Ordal GW, Helmann JD (1994) Chemotaxis in Bacillus subtilis requires either of two functionally redundant CheW homologs. J Bacteriol 176:2736–2739PubMedGoogle Scholar
  80. Silverman M, Matsumura P, Simon M (1976) The identification of the mot gene product with Escherichia coli-lambda hybrids. Proc Natl Acad Sci USA 73:3126–3130PubMedCrossRefGoogle Scholar
  81. Stocker BA (1953) Transduction of flagellar characters in Salmonella. J Gen Microbiol 9:410–433PubMedGoogle Scholar
  82. Sturr MG, Guffanti AA, Krulwich TA (1994) Growth and bioenergetics of alkaliphilic Bacillus firmus OF4 in continuous culture at high pH. J Bacteriol 176:3111–3116PubMedGoogle Scholar
  83. Sugiyama S (1995) Na+-driven flagellar motors as a likely Na+ re-entry pathway in alkaliphilic bacteria. Mol Microbiol 15:592PubMedCrossRefGoogle Scholar
  84. Swartz TH, Ikewada S, Ishikawa O, Ito M, Krulwich TA (2005) The Mrp system: a giant among monovalent cation/proton antiporters? Extremophiles 9:345–354PubMedCrossRefGoogle Scholar
  85. Szurmant H, Muff TJ, Ordal GW (2004) Bacillus subtilis CheC and FliY are members of a novel class of CheY-P-hydrolyzing proteins in the chemotactic signal transduction cascade. J Biol Chem 279:21787–21792PubMedCrossRefGoogle Scholar
  86. Szurmant H, Ordal GW (2004) Diversity in chemotaxis mechanisms among the bacteria and archaea. Microbiol Mol Biol Rev 68:301–19PubMedCrossRefGoogle Scholar
  87. Takami H, Nakasone K, Takaki Y, Maeno G, Sasaki R, Masui N, Fuji F, Hirama C, Nakamura Y, Ogasawara N, Kuhara S, Horikoshi K (2000) Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res 28:4317–4331PubMedCrossRefGoogle Scholar
  88. Takami H, Takaki Y, Uchiyama I (2002) Genome sequence of Oceanobacillus iheyensis isolated from the Iheya Ridge and its unexpected adaptive capabilities to extreme environments. Nucleic Acids Res 30:3927–3935PubMedCrossRefGoogle Scholar
  89. Terahara N, Fujisawa M, Powers B, Henkin TM, Krulwich TA, Ito M (2006) An intergenic stem-loop mutation in the Bacillus subtilis ccpA-motPS operon increases motPS transcription and the MotPS contribution to motility. J Bacteriol 188:2701–2705PubMedCrossRefGoogle Scholar
  90. Terahara N, Krulwich TA, Ito M (2008) Mutations alter the sodium versus proton use of a Bacillus clausii flagellar motor and confer dual ion use on Bacillus subtilis motors. Proc Natl Acad Sci USA 105:14359–64PubMedCrossRefGoogle Scholar
  91. Terashima H, Kojima S, Homma M (2008) Flagellar motility in bacteria structure and function of flagellar motor. Int Rev Cell Mol Biol 270:39–85PubMedCrossRefGoogle Scholar
  92. Titz B, Rajagopala SV, Ester C, Hauser R, Uetz P (2006) Novel conserved assembly factor of the bacterial flagellum. J Bacteriol 188:7700–6PubMedCrossRefGoogle Scholar
  93. Umemura T, Matsumoto Y, Ohnishi K, Homma M, Kawagishi I (2002) Sensing of cytoplasmic pH by bacterial chemoreceptors involves the linker region that connects the membrane-spanning and the signal-modulating helices. J Biol Chem 277:1593–8PubMedCrossRefGoogle Scholar
  94. Wadhams GH, Armitage JP (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5:1024–37PubMedCrossRefGoogle Scholar
  95. Wolfe AJ, Berg HC (1989) Migration of bacteria in semisolid agar. Proc Natl Acad Sci USA 86:6973–6977PubMedCrossRefGoogle Scholar
  96. Yamaguchi S, Fujita H, Ishihara A, Aizawa S, Macnab RM (1986) Subdivision of flagellar genes of Salmonella typhimurium into regions responsible for assembly, rotation, and switching. J Bacteriol 166:187–193PubMedGoogle Scholar
  97. Yamamoto K, Macnab RM, Imae Y (1990) Repellent response functions of the Trg and Tap chemoreceptors of Escherichia coli. J Bacteriol 172:383–8PubMedGoogle Scholar
  98. Yorimitsu T, Sato K, Asai Y, Kawagishi I, Homma M (1999) Functional interaction between PomA and PomB, the Na+-driven flagellar motor components of Vibrio alginolyticus. J Bacteriol 181:5103–5106PubMedGoogle Scholar
  99. Yoshida S, Sugiyama S, Hojo Y, Tokuda H, Imae Y (1990) Intracellular Na+ kinetically interferes with the rotation of the Na+-driven flagellar motors of Vibrio alginolyticus. J Biol Chem 265:20346–20350PubMedGoogle Scholar
  100. Zhao R, Pathak N, Jaffe H, Reese TS, Khan S (1996) FliN is a major structural protein of the C-ring in the Salmonella typhimurium flagellar basal body. J Mol Biol 261:195–208PubMedCrossRefGoogle Scholar
  101. Zhou J, Lloyd SA, Blair DF (1998a) Electrostatic interactions between rotor and stator in the bacterial flagellar motor. Proc Natl Acad Sci USA 95:6436–6441PubMedCrossRefGoogle Scholar
  102. Zhou J, Sharp LL, Tang HL, Lloyd SA, Billings S, Braun TF, Blair DF (1998b) Function of protonatable residues in the flagellar motor of Escherichia coli: a critical role for Asp 32 of MotB. J Bacteriol 180:2729–2735PubMedGoogle Scholar
  103. Zuberi AR, Ying C, Bischoff DS, Ordal GW (1991) Gene-protein relationships in the flagellar hook-basal body complex of Bacillus subtilis: sequences of the flgB, flgC, flgG, fliE and fliF genes. Gene 101:23–31PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • Masahiro Ito
    • 1
    • 2
  • Shun Fujinami
    • 1
    • 3
  • Naoya Terahara
    • 1
    • 2
  1. 1.Graduate School of Life SciencesToyo UniversityOura-gunJapan
  2. 2.Bio-nano Electronics Research CenterToyo UniversityKawagoeJapan
  3. 3.NITE Bioresource Information Center, Department of BiotechnologyNational Institute of Technology and EvaluationShibuya-kuJapan

Personalised recommendations