Adaptive Mechanisms of Extreme Alkaliphiles

  • Terry Ann Krulwich
  • Jun Liu
  • Masato Morino
  • Makoto Fujisawa
  • Masahiro Ito
  • David B. Hicks


“Most engineers accept the ‘no free lunch’ principle, which states that any mechanism that increases robustness in one setting (i.e., to one type of perturbation, or with respect to one type of output) always compromises it in another” (Lander et 7al. 2009).


Extreme alkaliphiles, like extremophiles in general, possess numerous structural, metabolic, physiological, and bioenergetic adaptations that enable them to function well under their particular “extreme” condition or, in the case of poly-extremophiles, under several extreme conditions at once (see also  Chaps. 2.1 Introduction and History of Alkaliphiles,  2.4 Anaerobic Alkaliphiles and Alkaliphilic Poly-Extremophiles). If they are facultative extremophiles, many of the adaptations are present even under non-extreme growth conditions. That is, the adaptations to the extreme condition are “hard-wired” although their expression may increase further when the bacteria confront the extreme condition(s). The...


Free Lunch Respiratory Chain Component Secondary Cell Wall Polymer Alkaliphilic Cyanobacterium Sodium Motive Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Work conducted in the authors’ laboratories was supported by research grant GM28454 and the Systems Biology Center-NY grant P50-GM071558 from the National Institute of General Medical Sciences (T.A.K) and a grant from the 21st Century Center of Excellence program of the Ministry of Education, Culture, Sports, Science and Technology of Japan (M.I.).


  1. Aono R, Ito M, Machida T (1999) Contribution of the cell wall component teichuronopeptide to pH homeostasis and alkaliphily in the alkaliphile Bacillus lentus C-125. J Bacteriol 181:6600–6606PubMedGoogle Scholar
  2. Battchikova N, Aro E-M (2007) Cyanobacterial NDH-1 complexes: multiplicity in function and subunit composition. Physiol Plantarum 131:22–32CrossRefGoogle Scholar
  3. Blanco-Rivero A, Leganes F, Fernandez-Valiente E, Calle P, Fernandez-Pinas F (2005) mrpA, a gene with roles in resistance to Na+ and adaptation to alkaline pH in the cyanobacterium Anabaena sp. PCC7120. Microbiology 151:1671–1682PubMedCrossRefGoogle Scholar
  4. Bowers KJ, Mesbah NM, Wiegel J (2009) Biodiversity of poly-extremophilic Bacteria: does combining the extremes of high salt, alkaline pH and elevated temperature approach a physico-chemical boundary for life? Saline Syst 5:9PubMedCrossRefGoogle Scholar
  5. Branden M, Sanden T, Brzezinski P, Widengren J (2006) Localized proton microcircuits at the biological membrane-water interface. Proc Natl Acad Sci USA 103:19766–19770PubMedCrossRefGoogle Scholar
  6. Ciferri O (1983) Spirulina, the edible microorganism. Microbiol Rev 47:551–578PubMedGoogle Scholar
  7. Cook GM, Russell JB, Reichert A, Wiegel J (1996) The intracellular pH of Clostridium paradoxum, an anaerobic, alkaliphilic, and thermophilic bacterium. Appl Environ Microbiol 62:4576–4579PubMedGoogle Scholar
  8. Dubnovitsky AP, Kapetaniou EG, Papageorgiou AC (2005) Enzyme adaptation to alkaline pH: atomic resolution (1.08 A) structure of phosphoserine aminotransferase from Bacillus alcalophilus. Protein Sci 14:97–110PubMedCrossRefGoogle Scholar
  9. Dzioba-Winogrodzki J, Winogrodzki O, Krulwich TA, Boin MA, Hase CC, Dibrov P (2009) The Vibrio cholerae Mrp system: cation/proton antiport properties and enhancement of bile salt resistance in a heterologous host. J Mol Microbiol Biotechnol 16:176–186PubMedCrossRefGoogle Scholar
  10. Ferguson SJ, Ingledew WJ (2008) Energetic problems faced by micro-organisms growing or surviving on parsimonious energy sources and at acidic pH: I. Acidithiobacillus ferrooxidans as a paradigm. Biochim Biophys Acta 1777:1471–1479PubMedCrossRefGoogle Scholar
  11. Ferguson SA, Keis S, Cook GM (2006) Biochemical and molecular characterization of a Na+-translocating F1F0-ATPase from the thermoalkaliphilic bacterium Clostridium paradoxum. J Bacteriol 188:5045–5054PubMedCrossRefGoogle Scholar
  12. Friedrich T, Weiss H (1997) Modular evolution of the respiratory NADH: ubiquinone oxidoreductase and the origin of its modules. J Theor Biol 187:529–540PubMedCrossRefGoogle Scholar
  13. Fujinami S, Terahara N, Krulwich TA, Ito M (2009) Motility and chemotaxis in alkaliphilic Bacillus species. Future Microbiol 4:1137–1149PubMedCrossRefGoogle Scholar
  14. Fujisawa M, Ito M, Krulwich TA (2007) Three two-component transporters with channel-like properties have monovalent cation/proton antiport activity. Proc Natl Acad Sci USA 104:13289–13294PubMedCrossRefGoogle Scholar
  15. Gilmour R, Messner P, Guffanti AA, Kent R, Scheberl A, Kendrick N, Krulwich TA (2000) Two-dimensional gel electrophoresis analyses of pH-dependent protein expression in facultatively alkaliphilic Bacillus pseudofirmus OF4 lead to characterization of an S-layer protein with a role in alkaliphily. J Bacteriol 182:5969–5981PubMedCrossRefGoogle Scholar
  16. Goto T, Matsuno T, Hishinuma-Narisawa M, Yamazaki K, Matsuyama H, Inoue N, Yumoto I (2005) Cytochrome c and bioenergetic hypothetical model for alkaliphilic Bacillus spp. J Biosci Bioeng 100:365–379PubMedCrossRefGoogle Scholar
  17. Guffanti AA, Hicks DB (1991) Molar growth yields and bioenergetic parameters of extremely alkaliphilic Bacillus species in batch cultures, and growth in a chemostat at pH 10.5. J Gen Microbiol 137:2375–2379PubMedGoogle Scholar
  18. Haines TH, Dencher NA (2002) Cardiolipin: a proton trap for oxidative phosphorylation. FEBS Lett 528:35–39PubMedCrossRefGoogle Scholar
  19. Hamamoto T, Hashimoto M, Hino M, Kitada M, Seto Y, Kudo T, Horikoshi K (1994) Characterization of a gene responsible for the Na+/H+ antiporter system of alkalophilic Bacillus species strain C-125. Mol Microbiol 14:939–946PubMedCrossRefGoogle Scholar
  20. Hanhe H, Mader U, Otto A, Bonn F, Steil L, Bremer E, Hecker M, Becher D (2009) A comprehensive proteomics and transcriptomics analysis of Baciilus subtilis salt stress adaptation. J Bacteriol. doi:10.1128/JB.01106-09Google Scholar
  21. Hicks DB, Krulwich TA (1995) The respiratory chain of alkaliphilic bacteria. Biochim Biophys Acta 1229:303–314PubMedCrossRefGoogle Scholar
  22. Hiramatsu T, Kodama K, Kuroda T, Mizushima T, Tsuchiya T (1998) A putative multisubunit Na+/H+ antiporter from Staphylococcus aureus. J Bacteriol 180:6642–6648PubMedGoogle Scholar
  23. Hoffmann A, Dimroth P (1991) The electrochemical proton potential of Bacillus alcalophilus. Eur J Biochem 201:467–473PubMedCrossRefGoogle Scholar
  24. Horikoshi K (1991) Microorganisms in alkaline environments. VCH, New YorkGoogle Scholar
  25. Ito M, Aono R (2002) Decrease in cytoplasmic pH-homeostastatic activity of the alkaliphile Bacillus lentus C-125 by a cell wall defect. Biosci Biotechnol Biochem 66:218–220PubMedCrossRefGoogle Scholar
  26. Ito M, Guffanti AA, Zemsky J, Ivey DM, Krulwich TA (1997) Role of the nhaC-encoded Na+/H+ antiporter of alkaliphilic Bacillus firmus OF4. J Bacteriol 179:3851–3857PubMedGoogle Scholar
  27. Ito M, Guffanti AA, Oudega B, Krulwich TA (1999) mrp, a multigene, multifunctional locus in Bacillus subtilis with roles in resistance to cholate and to Na+ and in pH homeostasis. J Bacteriol 181:2394–2402PubMedGoogle Scholar
  28. Ito M, Guffanti AA, Wang W, Krulwich TA (2000) Effects of nonpolar mutations in each of the seven Bacillus subtilis mrp genes suggest complex interactions among the gene products in support of Na+ and alkali but not cholate resistance. J Bacteriol 182:5663–5670PubMedCrossRefGoogle Scholar
  29. Ito M, Xu H, Guffanti AA, Wei Y, Zvi L, Clapham DE, Krulwich TA (2004) The voltage-gated Na+ channel NavBP has a role in motility, chemotaxis, and pH homeostasis of an alkaliphilic Bacillus. Proc Natl Acad Sci USA 101:10566–10571PubMedCrossRefGoogle Scholar
  30. Ivey DM, Krulwich TA (1992) Two unrelated alkaliphilic Bacillus species possess identical deviations in sequence from those of other prokaryotes in regions of F0 proposed to be involved in proton translocation through the ATP synthase. Res Microbiol 143:467–470PubMedCrossRefGoogle Scholar
  31. Kajiyama Y, Otagiri M, Sekiguchi J, Kosono S, Kudo T (2007) Complex formation by the mrpABCDEFG gene products, which constitute a principal Na+/H+ antiporter in Bacillus subtilis. J Bacteriol 189:7511–7514PubMedCrossRefGoogle Scholar
  32. Kajiyama Y, Otagiri M, Sekiguchi J, Kudo T, Kosono S (2009) The MrpA, MrpB and MrpD subunits of the Mrp antiporter complex in Bacillus subtilis contain membrane-embedded and essential acidic residues. Microbiology 155:2137–2147PubMedCrossRefGoogle Scholar
  33. Kapetaniou EG, Thanassoulas A, Dubnovitsky AP, Nounesis G, Papageorgiou AC (2006) Effect of pH on the strcuture and stability of Bacillus circulans ssp. alkalophilus phosphoserine aminotransferase: thermodynamic and cystallographic studies. Proteins 63:742–753PubMedCrossRefGoogle Scholar
  34. Kashyap DR, Botero LM, Lehr C, Hassett DJ, McDermott TR (2006) A Na+: H+ antiporter and a molybdate transporter are essential for arsenite oxidation in Agrobacterium tumefaciens. J Bacteriol 188:1577–1584PubMedCrossRefGoogle Scholar
  35. Kitada M, Guffanti AA, Krulwich TA (1982) Bioenergetic properties and viability of alkalophilic Bacillus firmus RAB as a function of pH and Na+ contents of the incubation medium. J Bacteriol 152:1096–1104PubMedGoogle Scholar
  36. Kosono S, Morotomi S, Kitada M, Kudo T (1999) Analyses of a Bacillus subtilis homologue of the Na+/H+ antiporter gene which is important for pH homeostasis of alkaliphilic Bacillus sp. C-125. Biochim Biophys Acta 1409:171–175PubMedCrossRefGoogle Scholar
  37. Kosono S, Haga K, Tomizawa R, Kajiyama Y, Hatano K, Takeda S, Wakai Y, Hino M, Kudo T (2005) Characterization of a multigene-encoded sodium/hydrogen antiporter (Sha) from Pseudomonas aeruginosa: its involvement in pathogenesis. J Bacteriol 187:5242–5248PubMedCrossRefGoogle Scholar
  38. Krulwich TA (1995) Alkaliphiles: “basic” molecular problems of pH tolerance and bioenergetics. Mol Microbiol 15:403–410PubMedCrossRefGoogle Scholar
  39. Krulwich TA, Hicks DB, Swartz TH, Ito M (2007) Bioenergetic adaptations that support alkaliphily. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM, Washington, pp 311–329Google Scholar
  40. Krulwich TA, Hicks DB, Ito M (2009) Cation/proton antiporter complements of bacteria: why so large and diverse? Mol Microbiol 74:257–260PubMedCrossRefGoogle Scholar
  41. Lander AD, Lo W-C, Nie Q, Wan FYM (2009) The measure of success: constraints, objectives, and tradeoffs in morphogen-mediated patterning. Cold Spring Harb Perspect Biol 1:a002022PubMedCrossRefGoogle Scholar
  42. Li Y, Mandelco L, Wiegel J (1993) Isolation and characterization of a moderately thermophilic anaerobic alkaliphile, Clostridium paradoxum sp. nov. Int J Syst Bacteriol 43:450–460CrossRefGoogle Scholar
  43. Liberton M, Berg RH, Heuser J, Roth R, Pakrasi HB (2006) Ultrastructure of the membrane systems in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. Protoplasma 227:129–138PubMedCrossRefGoogle Scholar
  44. Liu X, Gong X, Hicks DB, Krulwich TA, Yu L, Yu CA (2007) Interaction between cytochrome caa 3 and F1F0-ATP synthase of alkaliphilic Bacillus pseudofirmus OF4 is demonstrated by Saturation Transfer Electron Paramagnetic Resonance and Differential Scanning Calorimetry assays. Biochemistry 46:306–313PubMedCrossRefGoogle Scholar
  45. Liu J, Fujisawa M, Hicks DB, Krulwich TA (2009) Characterization of the functionally critical AXAXAXA and PXXEXXP motifs of the ATP synthase c-subunit from an alkaliphilic Bacillus. J Biol Chem 284:8714–8725PubMedCrossRefGoogle Scholar
  46. Ma Y, Xue Y, Grant WD, Collins NC, Duckworth AW, Van Steenbergen RP, Jones BE (2004) Alkalimonas amylolytica gen. nov., sp. nov., and Alkalimonas delamerensis gen. nov., sp. nov., novel alkaliphilic bacteria from soda lakes in China and East Africa. Extremophiles 8:193–200PubMedCrossRefGoogle Scholar
  47. Mathiesen C, Hagerhall C (2002) Transmembrane topology of the NuoL, M and N subunits of NADH: quinone oxidoreductase and their homologues among membrane-bound hydrogenases and bona fide antiporters. Biochim Biophys Acta 1556:121–132PubMedCrossRefGoogle Scholar
  48. Mathiesen C, Hagerhall C (2003) The “antiporter module” of respiratory chain Complex I includes the MrpC/NuoK subunit – a revision of the modular evolution scheme. FEBS Lett 5459:7–13CrossRefGoogle Scholar
  49. Matthies D, Preiss L, Klyszejko AL, Muller DJ, Cook GM, Vonck J, Meier T (2009) The c13 ring from a thermoalkaliphilic ATP synthase reveals an extended diameter due to a special structural region. J Mol Biol 388:611–618PubMedCrossRefGoogle Scholar
  50. McMillan DG, Keis S, Dimroth P, Cook GM (2007) A specific adaptation in the a subunit of thermoalkaliphilic F1F0-ATP synthase enables ATP synthesis at high pH but not at neutral pH values. J Biol Chem 282:17395–17404PubMedCrossRefGoogle Scholar
  51. McMillan DG, Keis S, Berney M, Cook GM (2009) Nonfermentative thermoalkaliphilic growth is restricted to alkaline environments. Appl Environ Microbiol 75:7649–7654PubMedCrossRefGoogle Scholar
  52. Meier T, Yu J, Raschle T, Henzen F, Dimroth P, Muller DJ (2005) Structural evidence for a constant c 11 ring stoichiometry in the sodium F-ATP synthase. FEBS J 272:5474–5483PubMedCrossRefGoogle Scholar
  53. Meier T, Morgner N, Matthies D, Pogoryelov D, Keis S, Cook GM, Dimroth P, Brutschy B (2007) A tridecameric c ring of the adenosine triphosphate (ATP) synthase from the thermoalkaliphilic Bacillus sp. strain TA2.A1 facilitates ATP synthesis at low electrochemical proton potential. Mol Microbiol 65:1181–1192PubMedCrossRefGoogle Scholar
  54. Mesbah NM, Hedrick DB, Peacock AD, Rohde M, Wiegel J (2007) Natranaerobius thermophilus gen. nov., sp. nov., a halophilic, alkalithermophilic bacterium from soda lakes of the Wadi An Natrun, Egypt, and proposal of Natranaerobiaceae fam. nov. and Natranaerobiales ord. nov. Int J Syst Evol Microbiol 57:2507–2512PubMedCrossRefGoogle Scholar
  55. Mesbah NM, Cook GM, Wiegel J (2009) The halophilic alkalithermophile Natranaerobius thermophilus adapts to multiple environmental extremes using a large repertoire of Na(K)/H antiporters. Mol Microbiol 74:270–281PubMedCrossRefGoogle Scholar
  56. Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191:144–148PubMedCrossRefGoogle Scholar
  57. Morino M, Natsui S, Swartz TH, Krulwich TA, Ito M (2008) Single gene deletions of mrpA to mrpG and mrpE point mutations affect activity of the Mrp Na+/H+ antiporter of alkaliphilic Bacillus and formation of hetero-oligomeric Mrp complexes. J Bacteriol 190:4162–4172PubMedCrossRefGoogle Scholar
  58. Mulkidjanian AY, Cherepanov DA, Heberle J, Junge W (2005) Proton transfer dynamics at membrane/water interface and mechanism of biological energy conversion. Biochemistry (Mosc) 70:251–256CrossRefGoogle Scholar
  59. Muntyan MS, Bloch DA (2008) Study of redox potential in cytochrome c covalently bound to terminal oxidase of alkaliphilic Bacillus pseudofirmus FTU. Biochemistry (Mosc) 73:107–111CrossRefGoogle Scholar
  60. Nevo R, Charuvi D, Shimoni E, Schwarz R, Kaplan A, Ohad I, Riech Z (2007) Thylakoid membrane perforations and connectivity enable intracellular traffic in cyanobacteria. EMBO J 26:1467–1473PubMedCrossRefGoogle Scholar
  61. Olsson K, Keis S, Morgan HW, Dimroth P, Cook GM (2003) Bioenergetic properties of the thermoalkaliphilic Bacillus sp. strain TA2.A1. J Bacteriol 185:461–465PubMedCrossRefGoogle Scholar
  62. Padan E (2008) The enlightening encounter between structure and function in the NhaA Na+-H+ antiporter. Trends Biochem Sci 33:435–443PubMedCrossRefGoogle Scholar
  63. Padan E, Zilberstein D, Schuldiner S (1981) pH homeostasis in bacteria. Biochim Biophys Acta 650:151–166PubMedCrossRefGoogle Scholar
  64. Padan E, Bibi E, Ito M, Krulwich TA (2005) Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta 1717:67–88PubMedCrossRefGoogle Scholar
  65. Peddie CJ, Cook GM, Morgan HW (2000) Sucrose transport by the alkaliphilic, thermophilic Bacillus sp. strain TA2.A1 is dependent on a sodium gradient. Extremophiles 4:291–296PubMedCrossRefGoogle Scholar
  66. Pogoryelov D, Sudhir PR, Kovacs L, Gombos Z, Brown I, Garab G (2003) Sodium dependency of the photosynthetic electron transport in the alkaliphilic cyanobacterium Arthrospira platensis. J Bioenerg Biomembr 35:427–437PubMedCrossRefGoogle Scholar
  67. Pogoryelov D, Yu J, Meier T, Vonck J, Dimroth P, Muller DJ (2005) The c 15 ring of the Spirulina platensis F-ATP synthase: F1/F0 symmetry mismatch is not obligatory. EMBO Rep 6:1040–1044PubMedCrossRefGoogle Scholar
  68. Pogoryelov D, Yildiz O, Faraldo-Gomez JD, Meier T (2009) High-resolution structure of the rotor ring of a proton-dependent ATP synthase. Nat Struct Mol Biol 16:1068–1073PubMedCrossRefGoogle Scholar
  69. Putnoky P, Kereszt A, Nakamura T, Endre G, Grosskopf E, Kiss P, Kondorosi A (1998) The pha gene cluster of Rhizobium meliloti involved in pH adaptation and symbiosis encodes a novel type of K+ efflux system. Mol Microbiol 28:1091–1101PubMedCrossRefGoogle Scholar
  70. Quirk PG, Hicks DB, Krulwich TA (1993) Cloning of the cta operon from alkaliphilic Bacillus firmus OF4 and characterization of the pH-regulated cytochrome caa3 oxidase it encodes. J Biol Chem 268:678–685PubMedGoogle Scholar
  71. Ren D, Navarro B, Xu H, Yue L, Shi Q, Clapham DE (2001) A prokaryotic voltage-gated sodium channel. Science 294:2372–2375PubMedCrossRefGoogle Scholar
  72. Ren Q, Chen K, Paulsen IT (2007) Transportn DB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels. Nucleic Acids Res 35:D274–D279PubMedCrossRefGoogle Scholar
  73. Saier MH (2002) Families of transporters and their classification. In: Quick M (ed) Transmembrane transporters. Wiley-Liss, New York, pp 1–17CrossRefGoogle Scholar
  74. Schaffer C, Messner P (2005) The structure of secondary cell wall polymers: how Gram-positive bacteria stick their cell walls together. Microbiology 151:643–651PubMedCrossRefGoogle Scholar
  75. Schneider D, Fuhrmann E, Scholz I, Hess WR, Graumann PL (2007) Fluorescence staining of live cyanobacterial cells suggest non-stringent chromosome segregation and absence of a connection between cytoplasmic and thylakoid membranes. BMC Cell Biol 8:39PubMedCrossRefGoogle Scholar
  76. Shioi JI, Matsuura S, Imae Y (1980) Quantitative measurements of proton motive force and motility in Bacillus subtilis. J Bacteriol 144:891–897PubMedGoogle Scholar
  77. Slonczewski JL, Fujisawa M, Dopson M, Krulwich TA (2009) Cytoplasmic pH Measurement and Homeostasis in Bacteria and Archaea. Adv Microb Physiol 55:1–317PubMedCrossRefGoogle Scholar
  78. Sturr MG, Guffanti AA, Krulwich TA (1994) Growth and bioenergetics of alkaliphilic Bacillus firmus OF4 in continuous culture at high pH. J Bacteriol 176:3111–3116PubMedGoogle Scholar
  79. Suigyama S, Matsukura H, Koyama N, Nosoh Y, Imae Y (1986) Requirement of Na+ in flagellar rotation and amino acid transport in a facultatively alkalophilic Bacillus. Biochim Biophys Acta 852:38–45CrossRefGoogle Scholar
  80. Swartz TH, Ikewada S, Ishikawa O, Ito M, Krulwich TA (2005) The Mrp system: a giant among monovalent cation/proton antiporters? Extremophiles 9:345–354PubMedCrossRefGoogle Scholar
  81. Swartz TH, Ito M, Ohira T, Natsui S, Hicks DB, Krulwich TA (2007) Catalytic properties of Staphylococcus aureus and Bacillus members of the Secondary Cation/Proton Antiporter-3 (Mrp) family are revealed by an optimized assay in an Escherichia coli host. J Bacteriol 189:3081–3090PubMedCrossRefGoogle Scholar
  82. Takami H, Nakasone K, Takaki Y, Maeno G, Sasaki R, Masui N, Fuji F, Hirama C, Nakamura Y, Ogasawara N, Kuhara S, Horikoshi K (2000) Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res 28:4317–4331PubMedCrossRefGoogle Scholar
  83. von Ballmoos C, Cook GM, Dimroth P (2008) Unique rotary ATP synthase and its biological diversity. Annu Rev Biophys 37:43–64CrossRefGoogle Scholar
  84. von Ballmoos C, Wiedenmann A, Dimroth P (2009) Essentials for ATP synthesis by F1F0 ATP synthases. Annu Rev Biochem 78:649–672CrossRefGoogle Scholar
  85. Wang Z, Hicks DB, Guffanti AA, Baldwin K, Krulwich TA (2004) Replacement of amino acid sequence features of a- and c-subunits of ATP synthases of alkaliphilic Bacillus with the Bacillus consensus sequence results in defective oxidative phosphorylation and non-fermentative growth at pH 10.5. J Biol Chem 279:26546–26554PubMedCrossRefGoogle Scholar
  86. Wei Y, Southworth TW, Kloster H, Ito M, Guffanti AA, Moir A, Krulwich TA (2003) Mutational loss of a K+ and NH4+ transporter affects the growth and endospore formation of alkaliphilic Bacillus pseudofirmus OF4. J Bacteriol 185:5133–5147PubMedCrossRefGoogle Scholar
  87. Wei Y, Liu J, Ma Y, Krulwich TA (2007) Three putative cation/proton antiporters from the soda lake alkaliphile Alkalimonas amylolytica N10 complement an alkali-sensitive Escherichia coli mutant. Microbiology 153:2168–2179PubMedCrossRefGoogle Scholar
  88. Williams RJ (1978) The multifarious couplings of energy transduction. Biochim Biophys Acta 505:1–44PubMedCrossRefGoogle Scholar
  89. Yamaguchi T, Tsutsumi F, Putnoky P, Fukuhara M, Nakamura T (2009) pH-dependent regulation of the multi-subunit cation/proton antiporter Pha1 system from Sinorhizobium meliloti. Microbiology 155:2750–2756PubMedCrossRefGoogle Scholar
  90. Yoshinaka T, Takasu H, Tomizawa R, Kosona S, Kudo T (2003) A shaE deletion mutant showed lower Na+ sensitivity compared to other deletion mutants in the Bacillus subtilis sodium/hydrogen antiporter (Sha) system. J Biosci Bioeng 95:306–309PubMedGoogle Scholar
  91. Yumoto I (2002) Bioenergetics of alkaliphilic Bacillus spp. J Biosci Bioeng 93:342–353PubMedGoogle Scholar
  92. Yumoto I (2007) Environmental and taxonomic biodiversities of Gram-positive alkaliphiles. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM, Washington, pp 295–310Google Scholar
  93. Zani M, Purcher T, Leblanc G (1993) Mutagenesis of acidic residues in putative membrane-spanning segments of the melibiose permease of Escherichia coli II. Effect on cationic selectivity and coupling properties. J Biol Chem 268:3216–3221PubMedGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • Terry Ann Krulwich
    • 3
  • Jun Liu
    • 1
  • Masato Morino
    • 2
  • Makoto Fujisawa
    • 2
  • Masahiro Ito
    • 2
  • David B. Hicks
    • 1
  1. 1.Department of Pharmacology and Systems TherapeuticsMount Sinai School of MedicineNew YorkUSA
  2. 2.Graduate School of Life SciencesToyo UniversityOra-gunJapan
  3. 3.Department of PharmacologyMount Sinai School of MedicineNew YorkUSA

Personalised recommendations