Actinobacteria of the Extremobiosphere

  • Alan T. Bull

The Actinobacteria

The class Actinobacteria is one of 27 currently comprising the Domain Bacteria; this chapter is the only one in the Handbook devoted to a single taxonomic group of bacteria, members of which are found in the complete spectrum of extreme environments. Actinobacteria are Gram-positive organisms characterized by having a high mol% G+C ratio, filamentous or nonfilamentous morphologies, and some members that produce spores. Regarded until recently as predominantly components of the soil microbiota, they are known now to have a ubiquitous distribution in the biosphere, including the extremobiosphere.

The class is organized into four subclasses and eight orders ( Actinomycetales, Acidimicrobiales, Bifidobacteriales, Coriobacteriales, Rubrobacterales, Nitriliruptorales, Solirubrobacterales, Thermoleophilales) the latter three of which have been described very recently (Sorokin et al. 2009; Reddy and Garcia-Pichel 2009). Reference throughout this chapter to Figs. 12.1.1 and 12.1.2...


Extreme Environment Soda Lake Permafrost Table Permafrost Soil Marine Actinomycete 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I am most grateful to several colleagues who sent me research papers prior to their publication; and to Michael Goodfellow, Marcel Jaspars, and Jem Stach for reading an earlier draft of this review and providing me with helpful comments. Wen-Jun Li and Zhi Xiao-Yang (The Key Laboratory for Microbial Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, China) very generously prepared the 16S rRNA gene tree of the Actinobacteria that is an updated version of the one contained in Zhi et al. (2009). Preparation of part of this review was made when the author was a Leverhulme Trust Emeritus Fellow.

The literature search for this chapter was completed on November 30, 2009.


  1. Aislabie JM, Chhour KL, Saul DJ, Miyauchi S, Ayton J, Paetzold RF, Balks MR (2006) Dominant bacteria in soils of Marble Point and Wright Valley, Victoria Land, Antarctica. Soil Biol Biochem 38:3041–3056CrossRefGoogle Scholar
  2. Al-Awadhi H, Sulaiman RHD, Mahmoud HM, Radwan SS (2007) Alkaliphilic and halophilic hydrocarbon-utilizing bacteria from Kuwaiti coasts of the Arabian Gulf. Appl Microbiol Biotechnol 77:183–186PubMedCrossRefGoogle Scholar
  3. Al-Mueini R, Al-Dalali M, Al-Amri IS, Heiko Patzelt H (2007) Hydrocarbon degradation at high salinity by a novel extremely halophilic actinomycete. Environ Chem 4:5–7CrossRefGoogle Scholar
  4. Alvarez HM, Silva RA, Cesari AC, Zamit AL, Peressutti SR, Keller U, Malkus U, Rasch C, Maskow T, Mayer F, Steinbuchel A (2004) Physiological and morphological responses of the soil bacterium Rhodococcus opacus strain PD630 to water stress. FEMS Microbiol Ecol 50:75–86PubMedCrossRefGoogle Scholar
  5. Antony-Babu S, Stach JEM, Goodfellow M (2008) Genetic and phenotypic evidence for Streptomyces griseus ecovars isolated from a beach and dune sand system. Antonie Leeuwenhoek 94:63–74PubMedCrossRefGoogle Scholar
  6. Antranikian G, Vorgias CE, Bertoldo C (2005) Extreme environments as a resource for microorganisms and novel biocatalysts. Adv Biochem Eng Biotechnol 96:219–262PubMedGoogle Scholar
  7. Asgarani E, Terato H, Asagoshi K, Shahmohammadi HR, Ohyama Y, Saito T, Yamamoto O, Ide H (2000) Purification and characterization of a novel DNA repair enzyme from the extremely radioresistant bacterium Rubrobacter radiotolerans. J Radiat Res 41:19–34PubMedCrossRefGoogle Scholar
  8. Asolkar RN, Jensen PR, Kauffman CA, Fenical W (2006) Daryamides A-C, weakly cytotoxic polyketides from a marine-derived actinomycete of the genus Streptomyces strain CNQ-085. J Nat Prod 69:1756–1759PubMedCrossRefGoogle Scholar
  9. Asolkar RN, Freel KC, Jensen PR, Fenical W, Kondratyuk TP, Park EJ, Pezzuto JM (2009) Arenamides A-C, cytotoxic NF kappa B inhibitors from the marine actinomycete Salinispora arenicola. J Nat Prod 72:396–440PubMedCrossRefGoogle Scholar
  10. Babalola OO, Kirby BM, Le Roes-Hill M, Cook AE, Cary SC, Burton SG, Cowan DA (2009) Phylogenetic analysis of actinobacterial populations associated with Antarctic Dry Valley mineral soils. Environ Microbiol 11:566–576PubMedCrossRefGoogle Scholar
  11. Battistuzzi FU, Hedges SB (2009) A major clade of prokaryotes with ancient adaptations to life on land. Mol Biol Evol 26:335–343PubMedCrossRefGoogle Scholar
  12. Berger F, Morellet N, Menu F, Potier P (1996) Cold shock and cold acclimation proteins in the psychotrophic bacterium Arthrobacter globiformis S155. J Bacteriol 178:2999–3007PubMedGoogle Scholar
  13. Berger F, Normand O, Potier P (1997) capA, a cspA-like gene that encodes a cold acclimation protein in the psychotrophic bacterium Arthrobacter globiformis S155. J Bacteriol 179:5670–5676PubMedGoogle Scholar
  14. Bergquist PL, Gibbs MD, Morris DD, Te’o VST, Saul DJ, Morgan HW (1999) Molecular diversity of thermophilic cellulolytic and hemicellulytic bacteria. FEMS Microbiol Ecol 28:99–110CrossRefGoogle Scholar
  15. Blunt JW, Copp BR, Hu WP, Munro MHG, Northcote PT, Prinsep MR (2009) Marine natural products. Nat Prod Rep 26:170–244PubMedCrossRefGoogle Scholar
  16. Boonlarppradab C, Kauffman CA, Jensen PR, Fenical W (2008) Marineosins A and B, cytotoxic spiroaminals from a marine-derived actinomycete. Org Lett 10:5505–5508PubMedCrossRefGoogle Scholar
  17. Bottos EM, Vincent WF, Greer CW, Whyte LG (2008) Prokaryotic diversity of arctic ice shelf microbial mats. Environ Microbiol 10:950–966PubMedCrossRefGoogle Scholar
  18. Bouvier T, del Giorgio PA (2006) Key role of selective viral induced mortality in determining marine bacterial community composition. Environ Microbiol 9:287–297CrossRefGoogle Scholar
  19. Brandao PFB, Maldonado LA, Ward AC, Bull AT, Goodfellow M (2001) Gordonia namibiensis sp. nov., a novel nitrile metabolizing actinomycete recovered from an African sand. Syst Appl Microbiol 24:510–515PubMedCrossRefGoogle Scholar
  20. Bringmann G, Lang G, Maksimenka K, Hamm A, Gulder TAM, Dieter A, Bull AT, Stach JEM, Kocher N, Müller WEG, Fiedler H-P (2005) Gephyromycin, the first bridged angucyclinone from Streptomyces griseus strain NTK 14. Phytochem 66:1366–1373CrossRefGoogle Scholar
  21. Bruns A, Philipp H, Cypionka H, Brinkhoff T (2003) Aeromicrobium marinum sp. nov., an abundant pelagic bacterium isolated from the German Wadden Sea. Int J Syst Evol Microbiol 53:1917–1923PubMedCrossRefGoogle Scholar
  22. Bruntner C, Binder T, Pathom-aree W, Goodfellow M, Bull AT, Potterat O, Puder C, Horer S, Schmid A, Bolek W, Wagner K, Mihm G, Fiedler HP (2005) Frigocyclinone, a novel angucyclinone antibiotic produced by a Streptomyces griseus strain from Antarctica. J Antibiot 58:346–349PubMedCrossRefGoogle Scholar
  23. Bryan CG, Johnson DB (2008) Dissimilatory ferrous iron oxidation at a low pH: a novel trait identified in the bacterial subclass Rubrobacteridae. FEMS Microbiol Lett 288:149–155PubMedCrossRefGoogle Scholar
  24. Bull AT (2004) Microbial Diversity and Bioprospecting. ASM Press, Washington, DC, pp xv + 1–496. ISBN 1-55581-267-8Google Scholar
  25. Bull AT, Stach JEM (2007) Marine actinomycetes; new opportunities for natural product search and discovery. Trends Microbiol 15:491–499PubMedCrossRefGoogle Scholar
  26. Bull AT, Stach JEM, Ward AC, Goodfellow M (2005) Marine Actinobacteria: perspectives, challenges and future directions. Antonie Leeuwenhoek 87:65–79CrossRefGoogle Scholar
  27. Busti E, Monciardini P, Cavaletti L, Bamonte R, Lazzarini A, Sosio M, Donadio S (2006) Antibiotic-producing ability by representatives of a newly discovered lineage of actinomycetes. Microbiology 152:675–683PubMedCrossRefGoogle Scholar
  28. Button DK (2004) Life in extremely dilute environments: the major role of oligobacteria. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM Press, Washington DC, pp 160–168Google Scholar
  29. Carreto L, Moore E, Nobre MF, Wait R, Riley PW, Sharp RJ, DaCosta MS (1996) Rubrobacter xylanophilus sp nov: a new thermophilic species isolated from a thermally polluted effluent. Int J Syst Bacteriol 46:460–465CrossRefGoogle Scholar
  30. Cavicchioli R, Ostrowski M, Fegatella F, Goodchild A, Guixa-Boixereu N (2003) Life under nutrient limitation in oligotrophic marine environments. An eco/physiological perspective of Sphingopyxis alaskensis (formerly Sphingomonas alaskensis). Microb Ecol 45:203–217PubMedCrossRefGoogle Scholar
  31. Chanal A, Chapon V, Benzerara K, Barakat M, Christen R, Achouak W, Barras F, Heulin T (2006) The desert of Tataouine: an extreme environment that hosts a wide diversity of microorganisms and radiotolerant bacteria. Environ Microbiol 8:514–525PubMedCrossRefGoogle Scholar
  32. Chen MY, Wu SH, Lin GH, Lu CP, Lin YT, Chang WC, Tsay SS (2004) Rubrobacter taiwanensis sp nov., a novel thermophilic, radiation-resistant species isolated from hot springs. Int J Syst Evol Microbiol 54:1849–1855PubMedCrossRefGoogle Scholar
  33. Cho J-H, Han J-H, Seong C-N, Kim SB (2006) Phylogenetic diversity of acidophilic sporoactinobacteria isolated from various soils. J Microbiol (Korea) 44:600–606Google Scholar
  34. Cho JY, Williams PG, Kwon HC, Jensen PR, Fenical W (2007) Lucentamycins A-D, cytotoxic peptides from the marine-derived actinomycete Nocardiopsis lucentensis. J Nat Prod 70:1321–1328PubMedCrossRefGoogle Scholar
  35. Clark DA, Norris PR (1996) Acidimicrobium ferrooxidans gen nov, sp nov: Mixed-culture ferrous iron oxidation with Sulfobacillus species. Microbiol 142:785–790CrossRefGoogle Scholar
  36. Cleaver AA, Burton NP, Norris PR (2007) A novel Acidimicrobium species in continuous cultures of moderately thermophilic, mineral-sulfide-oxidizing acidophiles. Appl Environ Microbiol 73:4294–4299PubMedCrossRefGoogle Scholar
  37. Colquhoun JA, Heald SC, Li L, Tamaoka J, Kato C, Horikoshi K, Bull AT (1998) Taxonomy and biotransformation activities of some deep-sea actinomycetes. Extremophiles 2:269–277PubMedCrossRefGoogle Scholar
  38. Connon SA, Lester ED, Shafaat HS, Obenhuber DC, Ponce A (2007) Bacterial diversity in hyper arid Atacama Desert soils. J Geophys Res 112:G04S17CrossRefGoogle Scholar
  39. Costello EK, Halloy SRP, Reed SC, Sowell P, Schmidt SK (2009) Fumarole-supported islands of biodiversity within a hyperarid, high-elevation landscape on Socompa Volcano, Puna de Atacama, Andes. Appl Environ Microbiol 75:735–747PubMedCrossRefGoogle Scholar
  40. Cui XL, Mao PH, Zeng M, Li WJ, Zhang LP, Xu LH, Jiang CL (2001) Streptimonospora salina gen. nov., sp nov., a new member of the family Nocardiopsaceae. Int J Syst Evol Microbiol 51:357–363PubMedGoogle Scholar
  41. Czaran TL, Hoekstra RF, Pagie L (2002) Chemical warfare between microbes promotes biodiversity. Proc Natl Acad Sci USA 99:786–790PubMedCrossRefGoogle Scholar
  42. D’Amico S, Collins T, Marx J-C, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rpts 7:385–389CrossRefGoogle Scholar
  43. Dai H-Q, Wang J, Xin Y-H, Pei G, Tang S-K, Ren B, Ward A, Ruan J-S, Li W-J, Zhang L-X (2010) Verrucosispora sediminis sp. nov., a cyclodipeptide- producing actinomycete from deep-sea sediment. Int J Syst Evol Microbiol 60:1807–1812PubMedCrossRefGoogle Scholar
  44. Daly MJ (2009) A new perspective on radiation resistance based on Deinococcus radiodurans. Nature Revs Microbiol 7:239–245Google Scholar
  45. Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Leapman RD, Lai B, Ravel B, Li SMW, Kemner KM, Fredrickson JK (2007) Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS Biol 5:769–770CrossRefGoogle Scholar
  46. Deming JW, Eicken H (2007) Life in ice. In: Sullivan WT III, Baross JA (eds) Planets and life: the emerging science of astrobiology. Cambridge University Press, Cambridge, pp 292–312Google Scholar
  47. Dib J, Motok J, Fernández Zenoff V, Ordoñez O, Farías MA (2008) Occurrence of resistance to antibiotics, UV-B, and arsenic in bacteria isolated from extreme environments in high-altitude (above 4400 m) Andean wetlands. Curr Microbiol 56:510–517PubMedCrossRefGoogle Scholar
  48. Du Z-J, Jordan EM, Rooney AP, Chen G-J, Austin B (2010) Corynebacterium marinum sp. nov. isolated from a coastal sediment. Int J Syst Evol Microbiol 60:1944–1947PubMedCrossRefGoogle Scholar
  49. Duxbury T, Gray TRG, Sharples GP (1977) Structure and chemistry of walls of rods, cocci and cyctites of Arthrobacter globiformis. J Gen Microbiol 103:91–99Google Scholar
  50. Englehardt K, Degnes KF, Kemmler M, Bredholt H, Fjaervik E, Klikenberg G, Sletta H, Ellingsen TE, Zotchev SB (2010) Production of a new thiopeptide antibiotic, TP-1161, by a marine Nocardiopsis species. Appl Environ Microbiol 76:4969–4976CrossRefGoogle Scholar
  51. Empadinhas N, Mendes V, Simões C, Santos MS, Mingote A, Lamosa P, Santos H, da Costa MS (2007) Organic solutes in Rubrobacter xylanophilus: the first example of di-myo-inositol-phosphate in a thermophile. Extremophiles 11:667–673PubMedCrossRefGoogle Scholar
  52. Epstein SS, Lewis K, Nichols D, Gavrish E (2010) New approaches to microbial isolation. In: Baltz R, Davies J, Demain A (eds) Manual of Industrial Microbiology and Biotechnology, 3rd edn. ASM Press, Washington DC, pp 3–12Google Scholar
  53. Euzeby JP (2009) List of Prokaryotic names with standing in nomenclature.
  54. Feling RH, Buchanan GO, Mincer TJ, Kauffman CA, Jensen PR, Fenical W (2003) Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angew Chem Int Ed 42:355–357CrossRefGoogle Scholar
  55. Fenical W, Jensen PR (2006) Developing a new resource for drug discovery: marine actinomycete bacteria. Nat Chem Biol 2:666–673PubMedCrossRefGoogle Scholar
  56. Fenical W, Jensen PR, Palladino MA, Lam KS, Lloyd GK, Potts BC (2009) Discovery and development of the anticancer agent salinosporamide A (NPI-0052). Bioorg Med Chem 17:2175–2180PubMedCrossRefGoogle Scholar
  57. Ferreira AC, Nobre MF, Moore E, Rainey FA, Battista JR, da Costa MS (1998) Characterization and radiation resistance of new isolates of Rubrobacter radiotolerans and Rubrobacter xylanophilus. Extremophiles 3:235–238CrossRefGoogle Scholar
  58. Fiedler HP, Bruntner C, Riedlinger J, Bull AT, Knutsen G, Goodfellow M, Jones A, Maldonado L, Pathom-aree W, Beil W, Schneider K, Keller S, Sussmuth RD (2008) Proximicin A, B and C, novel aminofuran antibiotic and anticancer compounds isolated from marine strains of the actinomycete Verrucosispora. J Antibiot 61:158–163PubMedCrossRefGoogle Scholar
  59. Finster KH, Herbert RA, Kjeldsen KU, Schumann P, Lomstein BA (2009) Demequina lutea sp. nov., isolated from high Arctic permafrost soil. Int J Syst Evol Microbiol 59:649–653PubMedCrossRefGoogle Scholar
  60. Garrido P, González-Toril E, García-Moyano A, Moreno-Paz M, Amils R, Parro V (2008) An oligonucleotide prokaryotic acidophile microarray: its validation and its use to monitor seasonal variations in extreme acidic environments with total environmental RNA. Environ Microbiol 10:836–850PubMedCrossRefGoogle Scholar
  61. Gavrish E, Bollmann A, Epstein S, Lewis K (2008) A trap for in situ cultivation of filamentous actinobacteria. J Microbiol Meth 72:257–262CrossRefGoogle Scholar
  62. Genoscope (2009) Geodermatophilaceae. Actinobacteria Modestobacter multiseptatus BC501 and Blastococcus saxobsidens DD2.,822.html
  63. Ghauri MA, Khalid AM, Grant S, Grant WD, Heaphy S (2007) Phylogenetic analysis of bacterial isolates from man-made high-pH, high-salt environments and identification of gene-cassette–associated open reading frames. Curr Microbiol 52:487–492CrossRefGoogle Scholar
  64. Gilichinsky DA et al (2007) Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology. Astrobiol 7:275–311CrossRefGoogle Scholar
  65. Gómez-Silva B, Rainet FA, Warren-Rhodes A, McKay CP, Navarro-González R (2008) In: Dion P, Nautiyal A (eds) Microbiology of Extreme Soils. Springer-Verlag Berlin, Heidelberg, pp 117–132CrossRefGoogle Scholar
  66. Gontang EA, Fenical W, Jensen PR (2007) Phylogenetic diversity of Gram positive bacteria cultured from marine. Appl Environ Microbiol 73:3272–3282PubMedCrossRefGoogle Scholar
  67. Gontang EA, Gaudencio SP, Fenical W, Jensen PR (2010) Sequence-based analysis of secondary-metabolite biosynthesis in marine actinobacteria. Appl Environ Microbiol 76:2487–2499PubMedCrossRefGoogle Scholar
  68. Goodfellow M, Fiedler H-P (2010) A guide to successful bioprospecting: informed by actinobacterial systematics. Antonie van Leeuwenhoek 98:119–142PubMedCrossRefGoogle Scholar
  69. Gorbushina AA (2007) Life on the rocks. Environ Microbiol 9:1613–1631PubMedCrossRefGoogle Scholar
  70. Gratia E, Weekers F, Margesin R, D’Amico S, Thonart P, Feller G (2009) Selection of a cold-adapted bacterium for bioremediation of wastewater at low temperatures. Extremophiles 13:763–768PubMedCrossRefGoogle Scholar
  71. Grochnauer MB, Leppard GG, Komaratat P, Kates M, Novitsky T, Kushner DJ (1975) Isolation and characterization of Actinopolyspora halophila, gen. nov. et sp. nov., an extremely halophilic actinomycete. Can J Microbiol 21:1500–1511CrossRefGoogle Scholar
  72. Grzymski JJ, Carter BJ, DeLong EF, Feldman RA, Ghadiri A, Murray AE (2006) Comparative genomics of DNA fragments from six Antarctic marine planktonic bacteria. Appl Environ Microbiol 72:1532–1541PubMedCrossRefGoogle Scholar
  73. Guan T-W, Tang S-K, Wu J-Y, Zhi X-Y, Xu L-H, Zhang L-L, Li W-J (2009) Haloglycomyces albus gen. nov., sp. nov., a halophilic, filamentous actinomycete of the family Glycomycetaceae. Int J Syst Evol Microbiol 59:1297–1301PubMedCrossRefGoogle Scholar
  74. Haferburg G, Groth I, Mollmann U, Kothe E, Sattler I (2009) Arousing sleeping genes: shifts in secondary metabolism of metal tolerant actinobacteria under conditions of heavy metal stress. Biometals 22:225–234PubMedCrossRefGoogle Scholar
  75. Hahn MW (2009) Description of seven candidate species affiliated with the phylum Actinobacteria, representing planktonic freshwater bacteria. Int J Syst Evol Microbiol 59:112–117PubMedCrossRefGoogle Scholar
  76. Hahn MW, Lunsdorf H, Wu QL, Schauer M, Hofle MG, Boenigk J, Stadler P (2003) Isolation of novel ultramicrobacteria classified as Actinobacteria from five freshwater habitats in Europe and Asia. Environ Microbiol 69:1442–1451CrossRefGoogle Scholar
  77. Hansen AA, Herbert RA, Mikkelsen K, Jensen LL, Kristoffersen T, Tiedje JM, Lomstein BA, Finster KW (2007) Viability, diversity and composition of the bacterial community in a high Arctic permafrost soil from Spitsbergen, Northern Norway. Environ Microbiol 9:2870–2884PubMedCrossRefGoogle Scholar
  78. Hardt IH, Jensen PR, Fenical W (2000) Neomarinone, and new cytotoxic marinone derivatives, produced by a marine filamentous bacterium (actinomycetales). Tetrahedron Lett 41:2073–2076CrossRefGoogle Scholar
  79. Heald SC, Brandão PFB, Hardicre R, Bull AT (2001) Physiology, biochemistry and taxonomy of deep-sea nitrile metabolising Rhodococcus strains. Antonie Leeuwenhoek 80:169–183PubMedCrossRefGoogle Scholar
  80. Hedges SB, Battistuzzi FU, Blair JE (2006) Molecular timescale of evolution in the Proterozonic. In: Xiao S, Kaufman AJ (eds) Neoproterozoic geobiology and paleobiology. Springer, Dordrecht, pp 199–229CrossRefGoogle Scholar
  81. Helmke E, Weyland H (1984) Rhodococcus marinonascens, an actinomycete from the sea. Int J Syst Bacteriol 34:127–138CrossRefGoogle Scholar
  82. Helmke E, Weyland H (2004) Psychrophilic versus psychrotolerant bacteria – occurrence and significance in polar and temperate marine habitats. Cell Molec Biol 50:553–561Google Scholar
  83. Hohmann C, Schneider K, Bruntner C, Brown R, Jones AL, Goodfellow M, Kraemer M, Imhoff JF, Nicholson G, Fiedler HP, Sussmuth RD (2009) Albidopyrone, a new alpha-pyrone-containing metabolite from marine-derived Streptomyces sp NTK 227. J Antibiot 62:75–79PubMedCrossRefGoogle Scholar
  84. Houston J, Hartley AJ (2003) The central Andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama desert. Int J Climatol 23:1453–1464CrossRefGoogle Scholar
  85. Huang SX, Zhao LX, Tang SK, Jiang CL, Duan YW, Shen B (2009a) Erythronolides H and I, new erythromycin congeners from a new halophilic actinomycete Actinopolyspora sp YIM90600. Org Lett 11:1353–1356PubMedCrossRefGoogle Scholar
  86. Huang WE, Ferguson A, Singer AC, Lawson K, Thompson IP, Kalin RM, Larkin MJ, Bailey MJ, Whiteley AS (2009b) Resolving genetic functions within microbial populations: in situ analyses using rRNA and mRNA stable isotope probing coupled with single-cell Raman-fluorescence in situ hybridization. Appl Environ Microbiol 75:234–241PubMedCrossRefGoogle Scholar
  87. Hugenholtz P, Stackebrandt E (2004) Reclassification of Sphaerobacter thermophilus from the subclass Sphaerobacteridae in the phylum Actinobacteria to the class Thermomicrobia (emended description) in the phylum Chloroflexi (emended description). J Syst Evol Microbiol 54:2049–2051CrossRefGoogle Scholar
  88. Hughes CC, Prieto-Davo A, Jensen PR, Fenical W (2008) The marinopyrroles, antibiotics of an unprecedented structure class from a marine Streptomyces sp. Org Lett 10:629–631PubMedCrossRefGoogle Scholar
  89. Hughes CC, MacMillan JB, Gaudencio SR, Jensen PR, Fenical W (2009) The Ammosamides: structures of cell cycle modulators from a marine-Streptomyces species. Angew Chem Int Ed 48:725–727CrossRefGoogle Scholar
  90. Ivanova V, Lyutskanova D, Stoilova-Disheva M, Kolarova M, Aleksieva K, Raykovska V, Peltekova V, Laatsch H (2009) Isolation and identification of alpha, alpha-trehalose and glycerol from an Arctic psychrotolerant Streptomyces sp. SB9 and their possible role in the strain’s survival. Prep Biochem Biotechnol 39:46–56PubMedCrossRefGoogle Scholar
  91. Jensen PR, Lauro FM (2008) An assessment of actinobacterial diversity in the marine environment. Antonie Leeuwenhoek 94:51–62PubMedCrossRefGoogle Scholar
  92. Jeong SY, Shin HJ, Kim TS, Lee HS, Park S, Kim HM (2006) Streptokordin, a new cytotoxic compound of the methylpyridine class from a marine-derived Streptomyces sp KORDI-3238. J Antibiot 59:234–240PubMedCrossRefGoogle Scholar
  93. Jezbera J, Sharma AK, Brandt U, Doolittle WF, Hahn MW (2009) “Candidatus Planktophila limnetica” an Actinobacterium representing one of the most numerically important taxa in freshwater bacterioplankton. Int J Syst Evol Microbiol 59:2864–2869PubMedCrossRefGoogle Scholar
  94. Johnson SS, Hebsgaard MB, Christensen Mastepanov M, Nielsen R, Munch K, Brand T, Gilbert MTP, Zuber MT, Bunce M, Rønn R, Gilichinsky D, Froese D, Willerslev E (2007) Ancient bacteria show evidence of DNA repair. Proc Nat Acad Sci USA 104:14401–14405PubMedCrossRefGoogle Scholar
  95. Johnson DB, Bacelar-Nicolau O, Okibe N, Thomas A, Hallberg KB (2009) Ferrimicrobium acidiphilum sp.nov., and Ferrithrix thermotolerans gen.nov., sp.nov.: heterotrophic, iron-oxidizing, extremely acidophilic actinobacteria. Int J Syst Evol Microbiol 59:1082–1089PubMedCrossRefGoogle Scholar
  96. Junge K, Gosink JJ, Hoppe HG, Staley JT (1998) Arthrobacter, Brachybacterium and Planococcus isolates identified from Antarctic sea ice brine. Description of Planococcus mcmeekinii, sp. nov. Syst Appl Microbiol 21:306–314PubMedCrossRefGoogle Scholar
  97. Kaeberlein T, Lewis K, Epstein SS (2002) Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296:1127–112PubMedCrossRefGoogle Scholar
  98. Kalaitzis JA, Hamano Y, Nilsen G, Moore BS (2003) Biosynthesis and structural revision of neomarinone. Org Lett 5:4449–4452PubMedCrossRefGoogle Scholar
  99. Kämpfer P, Rainey FA, Andersson MA, Nurmiaho Lassila E-L, Ulrych U, Busse H-J, Weiss N, Mikkola R, Salkinoja-Salonen M (2000) Frigoribacterium faeni gen.nov., sp. nov., a novel psychrophilic genus of the family Microbacteriaceae. Int J Syst Evol Microbiol 50:355–363PubMedCrossRefGoogle Scholar
  100. Katayama T, Kato T, Tanaka M, Douglas TA, Brouchkov A, Fukuda M, Tomita F, Asano K (2009) Glaciibacter superstes gen. nov., sp. nov., a novel member of the family Microbacteriaceae isolated from a permafrost ice wedge. Int J Syst Evol Microbiol 59:482–486PubMedCrossRefGoogle Scholar
  101. Keller S, Nicholson G, Drahl C, Sorensen E, Fiedler HP, Süssmuth RD (2007) Abyssomicins G and H and atrop-abyssomicin C from the marine Verrucosispora strain AB-18-032. J Antibiot 60:391–394PubMedCrossRefGoogle Scholar
  102. Kitagawa W, Tamura T (2008) Three types of antibiotics produced from Rhodococcus erythropolis strains. Microbes Environ 23:167–171PubMedCrossRefGoogle Scholar
  103. Kleinsteuber S, Riis V, Fetzer I, Harms H, Müller S (2006) Population dynamics within a microbial consortium during growth on diesel fuel in saline environments. Appl Environ Microbiol 72:3531–3542PubMedCrossRefGoogle Scholar
  104. Knoop S, Kunst S (1998) Influence of temperature and sludge loading on activated sludge settling, especially on Microthrix parvicella. Water Sci Technol 37:27–35Google Scholar
  105. Köpke B, Wilms R, Engelen B, Cypionka H, Sass H (2005) Microbial diversity in coastal subsurface sediments: a cultivation approach using various electron acceptors and substrate gradients. Appl Environ Microbiol 71:7819–7830PubMedCrossRefGoogle Scholar
  106. Kumari SKS, Marrengane Z, Bux F (2009) Application of quantitative RT-PCR to determine the distribution of Microthrix parvicella in full-scale activated sludge treatment systems. Appl Microbiol Biotechnol 83:1135–1141PubMedCrossRefGoogle Scholar
  107. Kunisawa T (2007) Gene arrangements characteristic of the phylum Actinobacteria. Antonie Leeuwenhoek 92:359–365PubMedCrossRefGoogle Scholar
  108. Kuznetsov VD, Zaitseva TA, Vakulenko LV, Filippova SN (1992) Streptomyces albiaxalis, a new petroleum hydrocarbon-degrading species of thermotolerant and halotolerant Streptomyces. Microbiology 61:62–67Google Scholar
  109. Kwon HC, Kauffman CA, Jensen PR, Fenical W (2006) Marinomycins A-D, antitumor-antibiotics of a new structure class from a marine actinomycete of the recently discovered genus “Marinispora”. J Amer Chem Soc 128:1622–1632CrossRefGoogle Scholar
  110. Lauro FM, Chastain RA, Blankenship LE, Yayanos AA, Bartlett DH (2007) The unique 16S rRNA genes of piezophiles reflect both phylogeny and adaptation. Appl Environ Microbiol 73:838–845PubMedCrossRefGoogle Scholar
  111. Lee DW, Lee SD (2010) Marmoricola scoriae sp. nov., isolated from volcanic ash. Int J Syst Evol Microbiol 60:2135–2139PubMedCrossRefGoogle Scholar
  112. Li FC, Maskey RP, Qin S, Sattler I, Fiebig HH, Maier A, Zeeck A, Laatsch H (2005) Chinikomycins A and B: Isolation, structure elucidation, and biological activity of novel antibiotics from a marine Streptomyces sp isolate M045. J Nat Prod 68:349–353PubMedCrossRefGoogle Scholar
  113. Li YF, Costello JC, Holloway AK, Hahn MW (2008) “Reverse ecology” and the power of population genomics. Evol 62:2984–2994CrossRefGoogle Scholar
  114. Liebner S, Harder J, Wagner D (2008) Bacterial diversity and community structure in polygonal tundra soils from Samoylov Island, Lena Delta, Siberia. Int Microbiol 11:195–202PubMedGoogle Scholar
  115. Liu YQ, Yao TD, Jiao NZ, Kang SC, Huang SJ, Li Q, Wang KJ, Liu XB (2009) Culturable bacteria in glacial meltwater at 6,350 m on the East Rongbuk Glacier, Mount Everest. Extremophiles 13:89–99PubMedCrossRefGoogle Scholar
  116. Liu Z, Li Y, Zheng L-Q, Huang Y-J, Li W-J (2010) Saccharopolyspora marina sp. nov., isolated from an ocean sediment of the East China Sea. Int J Syst Evol Microbiol 60:1854–1857PubMedCrossRefGoogle Scholar
  117. Lozupone C, Hamady M, Knight R (2006) UniFrac – an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformat 7(371):14Google Scholar
  118. Luo H-Y, Wang Y-R, Miao L-H, Yang P-L, Shi P-J, Fang C-X, Yao B, Fan Y-L (2009) Nesterenkonia alba sp. nov., an alkaliphilic actinobacterium isolated from the black liquor treatment system of a cotton pulp mill. Int J Syst Evol Microbiol 59:863–868PubMedCrossRefGoogle Scholar
  119. Luscombe BM, Gray TRG (1974) Characteristics of Arthrobacter grown in continuous culture. J Gen Microbiol 82:213–222Google Scholar
  120. Makarova KS, Aravind I, Wolf YI, Tatusov RI, Minton KW, Koonin EV, Daly MJ (2001) Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Molec Biol Revs 65:44–79CrossRefGoogle Scholar
  121. Maldonado LA, Fenical W, Jensen PR, Kauffman CA, Mincer TJ, Ward AC, Bull AT, Goodfellow M (2005a) Salinispora arenicola gen. nov., sp. nov. and Salinispora tropica sp. nov., obligate marine actinomycetes belonging to the family Micromonosporaceae. Int J Syst Evol Microbiol 55:1759–1766PubMedCrossRefGoogle Scholar
  122. Maldonado LA, Stach JEM, Pathom-aree W, Ward AC, Bull AT, Goodfellow M (2005b) Diversity of cultivable actinobacteria in geographically widespread marine sediments. Antonie Leeuwenhoek 87:11–18PubMedCrossRefGoogle Scholar
  123. Maldonado LA, Stach JEM, Ward AC, Bull AT, Goodfellow M (2008) Characterisation of micromonosporae from aquatic environments using molecular taxonomic methods. Antonie Leeuwenhoek 94:289–298PubMedCrossRefGoogle Scholar
  124. Mannisto MK, Schumann P, Rainey FA, Kampfer P, Tsitko K, Tiirola MA, Salkinoja-Salonen MS (2000) Subtercola boreus gen. nov., sp. nov and Subtercola frigoramans sp nov., two new psychrophilic actinobacteria isolated from boreal groundwater. Int J Syst Evol Microbiol 50:1731–1739PubMedGoogle Scholar
  125. Maskey RP, Li FRC, Qin S, Fiebig HH, Laatsch H (2003) Chandrananimycins A-C: Production of novel anticancer antibiotics from a marine Actinomadura sp isolate M048 by variation of medium composition and growth conditions. J Antibiot 56:622–629PubMedCrossRefGoogle Scholar
  126. Mason OU, Di Meo-Savoie CA, Van Nostrand JD, Zhou JZ, Fisk MR, Giovannoni SJ (2009) Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts. ISME J 3:231–242PubMedCrossRefGoogle Scholar
  127. McArthur KA, Mitchell SS, Tsueng G, Rheingold A, White DJ, Grodberg J, Lam KS, Potts BCM (2008) Lynamicins A-E, chlorinated bisindole pyrrole antibiotics from a novel marine actinomycete. J Nat Prod 71:1732–1737PubMedCrossRefGoogle Scholar
  128. McKay CP, Freedman EI, Gómez-Silva B, Cáceres-Villanueva L, Andersen DT, Landheim R (2003) Temperature and moisture conditions for life in the extreme arid region of the Atacama desert: four years of observation including the El Niño of 1997–1998. Astrobiol 3:393–406CrossRefGoogle Scholar
  129. McLeod MP et al (2006) The complete genome of Rhodococcus sp RHA1 provides insights into a catabolic powerhouse. Proc Nat Acad Sci USA 103:15582–15587PubMedCrossRefGoogle Scholar
  130. Mesbah NM, Wiegel J (2008) Life at extreme limits – the anaerobic halophilic alkalithermophiles. Ann NY Acad Sci 1125:44–57PubMedCrossRefGoogle Scholar
  131. Methé BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang XJ, Moult J, Madupu R, Nelson WC, Dodson RJ, Brinkac LM, Daugherty SC, Durkin AS, DeBoy RT, Kolonay JF, Sullivan SA, Zhou LW, Davidsen TM, Wu M, Huston AL, Lewis M, Weaver B, Weidman JF, Khouri H, Utterback TR, Feldblyum TV, Fraser C (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Nat Acad Sci USA 102:10913–10918PubMedCrossRefGoogle Scholar
  132. Mevs U, Stackebrandt E, Schumann P, Gallikowski CA, Hirsch P (2000) Modestobacter multiseptatus gen. nov., sp. nov., a budding actinomycete from soils of the Asgard Range (Transantarctic Mountains). Int J Syst Evol Microbiol 50:337–346PubMedCrossRefGoogle Scholar
  133. Miao V, Davies J (2010) Actinobacteria: the good, the bad, and the ugly. Antonie van Leeuwenhoek 98:143–150PubMedCrossRefGoogle Scholar
  134. Miller ED, Kauffman CA, Jensen PR, Fenical W (2007) Piperazimycins: Cytotoxic hexadepsipeptides from a marine-derived bacterium of the genus Streptomyces. J Org Chem 72:323–330PubMedCrossRefGoogle Scholar
  135. Miteva VI, Brenchley JE (2005) Detection and isolation of ultrasmall microorganisms from a 120, 000-year-old Greenland glacier ice core. Appl Environ Microbiol 71:7806–7818PubMedCrossRefGoogle Scholar
  136. Miteva V, Teacher C, Sowers T, Brenchley J (2009) Comparison of the microbial diversity at different depths of the GISP2 Greenland ice core in relationship to deposition climates. Environ Microbiol 11:640–656PubMedCrossRefGoogle Scholar
  137. Mojib N, Bej AK, Hoover R (2008) Diversity and cold adaptation of microorganisms from the Schirmacher Oasis, Antartcica. Proc Soc Photo-Opt Instrum Eng (SPIE) 7097:K970Google Scholar
  138. Mueller DR, Vincent WF, Bonilla S, Laurion I (2005) Extremotrophs, extremophiles and broadband pigmentation strategies in a high arctic ice shelf ecosystem. FEMS Microbiol Ecol 53:73–87PubMedCrossRefGoogle Scholar
  139. Mukherjee J, Llewellyn LE, Evans-Illidge EA (2009) A tropical marine microbial natural products geobibliography as an example of desktop exploration of current research using web visualisation tools. Mar Drugs 6:550–557CrossRefGoogle Scholar
  140. Navarro-Gonzalez R, Rainey F, Molina P, Bagaley DR, Hollen BJ, de la Rosa J, Small AM, Quinn RC, Grunthaner FJ, Cáceres L, Gómez-Silva B, McKay CP (2003) Mars-like soils in the Atacama Desert, Chile and the dry limit of microbial life. Science 302:1018–1021PubMedCrossRefGoogle Scholar
  141. Nicolaou KC, Harrison ST (2006) Total synthesis of abyssomicin C and atrop-abyssomicin C. Angew Chem Int Ed 45:3256–3260CrossRefGoogle Scholar
  142. Nobre A, Alarico S, Fernandes C, Empadinhas N, da Costa MS (2008) A unique combination of genetic systems for the synthesis of trehalose in Rubrobacter xylanophilus: properties of a rare actinobacterial TreT. J Bacteriol 190:7939–7946PubMedCrossRefGoogle Scholar
  143. Oh DC, Gontang EA, Kauffman CA, Jensen PR, Fenical W (2008) Salinipyrones and pacificanones, mixed-precursor polyketides from the marine actinomycete Salinispora pacifica. J Nat Prod 71:570–575PubMedCrossRefGoogle Scholar
  144. Okibe N, Johnson DB (2004) Biooxidation of pyrite by defined mixed cultures of moderately thermophilic acidophiles in pH-controlled bioreactors: significance of microbial interactions. Biotechnol Bioeng 87:574–583PubMedCrossRefGoogle Scholar
  145. Okoro CK, Brown R, Jones AL, Andrews BA, Asenjo JA, Goodfellow M, Bull AT (2009a) Culturable actinomycete diversity in hyper-arid soils of the Atacama Desert, Chile. Antonie Leeuwenhoek 95:121–133PubMedCrossRefGoogle Scholar
  146. Okoro CK, Bull AT, Mutreja C, Rong X, Huang Y, Goodfellow M (2009b) Lechevalieria atacamensis sp. nov., Lechevalieria deserti nov., and Lechevalieria roselyniae sp. nov., isolated from hyper-arid soils of the Atacama Desert, Chile. Int J Syst Evol Microbiol 60:296–300Google Scholar
  147. Olano C, Méndez C, Salas JA (2009) Antitumor compounds from marine actinomycetes. Mar Drugs 7:210–248PubMedCrossRefGoogle Scholar
  148. Pathirana C, Jensen PR, Fenical W (1992) Marinone and debromomarinone - antibiotic sesquiterpenoid naphthoquinones of a new structure class from a marine bacterium. Tetrahedron Lett 33:7663–7666CrossRefGoogle Scholar
  149. Pathom-aree W, Stach JEM, Ward AC, Horikoshi K, Bull AT, Goodfellow M (2006a) Diversity of actinomycetes isolated from Challenger Deep sediment (10 898 m) from the Mariana Trench. Extremophiles 10:181–189PubMedCrossRefGoogle Scholar
  150. Pathom-aree W, Nogi Y, Sutcliffe IC, Ward AC, Horikoshi K, Bull AT, Goodfellow M (2006b) Dermacoccus abyssi sp. nov., a novel piezotolerant actinomycete isolated from the Mariana Trench. Int J Syst Evol Microbiol 56:1233–1237PubMedCrossRefGoogle Scholar
  151. Pathom-aree W, Nogi Y, Ward AC, Horikoshi K, Bull AT, Goodfellow M (2006c) Dermacoccus barathri sp. nov. and Dermacoccus profundi sp. nov., novel actinomycetes isolated from deep-sea mud of the Mariana Trench. Int J Syst Evol Microbiol 56:2303–2307PubMedCrossRefGoogle Scholar
  152. Perry JJ (2006) The Genus Thermoleophilum. Prokaryotes 7:843–848CrossRefGoogle Scholar
  153. Pikuta EV, Hoover RB, Tang J (2007) Microbial extremophiles at the limits of life. Crit Revs Microbiol 33:183–209CrossRefGoogle Scholar
  154. Pointing SB, Warren-Rhodes KA, Lacap DC, Rhodes KL, McKay CP (2007) Hypolithic community shifts occur as a result of liquid water availability along environmental gradients in China’s hot and cold hyperarid deserts. Environ Microbiol 9:414–424PubMedCrossRefGoogle Scholar
  155. Poretsky RS, Bano N, Buchan A, LeCleir G, Kleikemper J, Pickering M, Pate WM, Moran MA, Hollibaugh JT (2005) Analysis of microbial gene transcripts in environmental samples. Appl Environ Microbiol 71:4121–4126PubMedCrossRefGoogle Scholar
  156. Prieto-Davo A, Fenical W, Jensen PR (2008) Comparative actinomycete diversity in marine sediments. Aquat Microb Ecol 52:1–11CrossRefGoogle Scholar
  157. Priscu JC, Christner BC (2004) Earth’s icy biosphere. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM Press, Washington DC, pp 130–145Google Scholar
  158. Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649PubMedCrossRefGoogle Scholar
  159. Rainey FA, Ray K, Ferreira M, Gatz BZ, Nobre MF, Bagaley D, Rash BA, Park MJ, Earl AM, Shank NC, Small AM, Henk MC, Battista JR, Kampfer P, da Costa MS (2005) Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl Environ Microbiol 71:5225–5235PubMedCrossRefGoogle Scholar
  160. Rappé MS, Gordon DA, Vergin KL, Giovannoni SJ (1999) Phylogeny of actinobacteria small subunit (SSU) rRNA gene clones recovered from marine bacterioplankton. Syst Appl Microbiol 22:106–112CrossRefGoogle Scholar
  161. Reddy GSN, Garcia-Pichel F (2009) Description of Patulibacter americanus sp nov., isolated from biological soil crusts, emended description of the genus Patulibacter Takahashi et al. 2006 and proposal of Solirubrobacterales ord. nov and Thermoleophilales ord. nov. Int J Syst Evol Microbiol 59:87–94PubMedCrossRefGoogle Scholar
  162. Reddy GSN, Prakash JSS, Matsumoto GI, Stackebrandt E, Shivaji S (2002) Arthrobacter roseus sp. nov., a psychrophilic bacterium isolated from an Antarctic cyanobacterial mat sample. Int J Syst Evol Microbiol 52:1017–1021PubMedCrossRefGoogle Scholar
  163. Reddy GSN, Prakash JSS, Prabahar V, Matsumoto GI, Stackebrandt E, Shivaji S (2003) Kocuria polaris sp. nov., and orange-pigmented pyschrophilic bacterium isolated from an Antarctic cyanobacterial mat sample. Int J Syst Evol Microbiol 53:183–187PubMedCrossRefGoogle Scholar
  164. Riedlinger J, Reicke A, Krismer B, Zähner B, Bull AT, Maldonado LA, Goodfellow M, Bister B, Bischoff D, Süssmuth RD, Fiedler H-P (2004) Abyssomicins, inhibitors of para-aminobenzoic acid pathway produced by the marine Verrucosispora strain AB-18-032. J Antibiot 57:271–279PubMedCrossRefGoogle Scholar
  165. Romero F, Espliego F, Baz JP, DeQuesada TG, Gravalos D, DelaCalle F, FernadezPuertes JL (1997) Thiocoraline, a new depsipeptide with antitumor activity produced by a marine Micromonospora. 1. Taxonomy, fermentation, isolation, and biological activities. J Antibiot 50:734–737PubMedCrossRefGoogle Scholar
  166. Rong X, Liu N, Ruan J, Huang Y (2010) Multilocus sequencing analysis of Streptomyces griseus isolates delineating intraspecific diversity in terms of both taxonomy and biosynthetic potential. Antonie van Leeuwenhoek 98:237–248PubMedCrossRefGoogle Scholar
  167. Rusch DB et al (2007) The Sorcerer II Global Ocean Sampling expedition: Northwest Atlantic through Eastern Tropical Pacific. PLoS Biol 5(e77):398–431Google Scholar
  168. Russell NJ (1997) Psychrophilic bacteria-molecular adaptations of membrane lipids. Comp Biochem Physiol 118A:489–493CrossRefGoogle Scholar
  169. Sato S, Iwata F, Mukai T, Yamada S, Takeo J, Abe A, Kawahara H (2009) Indoxamycins A-F Cytotoxic tricycklic polypropionates from a marine-derived actinomycete. J Org Chem 74:5502–5509PubMedCrossRefGoogle Scholar
  170. Schumann P, Prauser H, Rainey FA, Stackebrandt E, Hirsch P (1997) Friedmanniella antarctica gen. nov., sp. nov., an LL-diaminopimelic acid-containing actinomycete from Antarctic sandstone. Int J Syst Evol Microbiol 47:2787–283Google Scholar
  171. Servin JA, Herbold CW, Skophammer RG, Lake JA (2008) Evidence excluding the root of the tree of life from the Actinobacteria. Mol Biol Evol 25:1–14PubMedCrossRefGoogle Scholar
  172. Sghaier H, Ghedira K, Benkahla A, Barkallah I (2008) Basal DNA repair machinery is subject to positive selection in ionizing-radiation-resistant bacteria. BMC Genomics 9:297PubMedCrossRefGoogle Scholar
  173. Sharma AK, Sommerfeld K, Bullerjahn GS, Matteson AR, Wilhelm SW, Jezbera J, Brandt U, Doolittle WF, Hahn MW (2009) Actinorhodopsin genes discovered in diverse freshwater habitats and among cultivated freshwater Actinobacteria. ISME J 3:1–12CrossRefGoogle Scholar
  174. Sheridan PP, Freeman KH, Brenchley JE (2003) Estimated minimal divergence times of the major bacterial and archaeal phyla. Geomicrobiol J 20:1–14CrossRefGoogle Scholar
  175. Shivaji S, Rao NS, Sheth SV, Reddy GSN, Bhargava PM (1988) Isolation and identification of Micrococcus roseus and Planococcus sp. from Schirmacher oasis, Antarctica. J Biosci 13:409–414CrossRefGoogle Scholar
  176. Socha AM, LaPlante KL, Russell DJ (2009) Structure-activity studies of echinomycin antibiotics against drug-resistant and biofilm-forming Staphylococcus aureus and Enterococcus faecalis. Bioorg Med Chem Lett 19:1504–150PubMedCrossRefGoogle Scholar
  177. Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103:12115–12120PubMedCrossRefGoogle Scholar
  178. Song ZQ, Zhi XY, Li WJ, Jiang HC, Zhang CL, Dong HL (2009) Actinobacterial diversity in hot Springs in Tengchong (China), Kamchatka (Russia), and Nevada (USA). Geomicrobiol J 26:256–263CrossRefGoogle Scholar
  179. Sorokin DY, van Pelt S, Tourova TP, Evtushenko LI (2009) Nitriliruptor alkaliphilus gen. nov., sp nov., a deep-lineage haloalkaliphilic actinobacterium from soda lakes capable of growth on aliphatic nitriles, and proposal of Nitriliruptoraceae fam. nov and Nitriliruptorales ord. nov. Int J Syst Evol Microbiol 59:248–253PubMedCrossRefGoogle Scholar
  180. Stach JEM, Bull AT (2005) Estimating and comparing the diversity of marine actinobacteria. Antonie Leeuwenhoek 87:3–9PubMedCrossRefGoogle Scholar
  181. Stackebrandt, Rainey FA, Ward-Rainey NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Evol Microbiol 47:479–491Google Scholar
  182. Steven B, Briggs G, McKay CP, Pollard WH, Greer CW, Whyte LG (2007) Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods. FEMS Microbiol Ecol 59:513–523PubMedCrossRefGoogle Scholar
  183. Steven B, Pollard WH, Greer CW, Whyte LG (2008) Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic. Environ Microbiol 10:3388–3403PubMedCrossRefGoogle Scholar
  184. Stingl U, Cho JC, Foo W, Vergin KL, Lanoil B, Giovannoni SJ (2008) Dilution-to-extinction culturing of psychrotolerant planktonic bacteria from permanently ice-covered lakes in the McMurdo dry valleys, Antarctica. Microb Ecol 55:395–405PubMedCrossRefGoogle Scholar
  185. Strangman WK, Kwon HC, Broide D, Jensen PR, Fenical W (2009) Potent inhibitors of pro-inflammatory cytokine production produced by a marine-derived bacterium. J Med Chem 52:2317–2327PubMedCrossRefGoogle Scholar
  186. Sunga MJ, Teisan S, Tsueng G, Macherla VR, Lam KS (2008) Seawater requirement for the production of lipoxazolidinones by marine actinomycete strain NPS8920. J Ind Microbiol Biotechnol 35:761–765PubMedCrossRefGoogle Scholar
  187. Tang SK, Tian XP, Zhi XY, Cai M, Wu JY, Yang LL, Xu LH, Li WJ (2008) Haloactinospora alba gen. nov., sp. nov., a halophilic filamentous actinomycete of the family Nocardiopsaceae. Int J Syst Evol Microbiol 58:2075–2080PubMedCrossRefGoogle Scholar
  188. Tang SK, Wang Y, Lou K, Mao P-H, Xu LH, Jiang CL, Kim CJ, Li WJ (2009) Kocuria halotolerans sp.nov., and actinobacterium isolated from a saline soil in China. Int J Syst Evol Microbiol 59:1316–1320PubMedCrossRefGoogle Scholar
  189. Tang S-K, Zhi X-Y, Wang J-Y, Lee J-C, Kim C-J, Lou K, Xu L-H, Li W-J (2010a) Haloactinobacterium album gen. nov, sp. nov. a halophilic actinobacterium and proposal of Ruaniaceae fam. nov. Int J Syst Evol Microbiol 60:2113–2119PubMedCrossRefGoogle Scholar
  190. Tang S-K, Wang Y, Zhang H, Lee J-C, Lou K, Kim C-J, Li W-J (2010b) Haloechinothrix alba gen. nov., sp. nov., a halophilic, filamentous actinomnycete of the suborder Pseudonocardineae. Int J Syst Evol Microbiol 60:2154–2158PubMedCrossRefGoogle Scholar
  191. Tiago I, Pires C, Mendes V, Morais PV, da Costa M, Verissimo A (2005) Microcella putealis gen. nov., a Gram-positive alkaliphilic bacterium isolated from a nonsaline alkaline groundwater. Syst Appl Microbiol 28:479–487PubMedCrossRefGoogle Scholar
  192. Udwary DW, Zeigler L, Asolkar RN, Singan V, Lapidus A, Fenical W, Jensen PR, Moore BS (2007) Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proc Natl Acad Sci USA 104:10376–10381PubMedCrossRefGoogle Scholar
  193. Unell M, Kabelitz N, Jansson JK, Heipieper HJ (2007) Adaptation of the psychrotroph Arthrobacter chlorophenolicus A6 to growth temperature and the presence of phenols by changes in the anteiso/iso ratio of branched fatty acids. FEMS Microbiol Lett 266:138–143PubMedCrossRefGoogle Scholar
  194. Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Molec Biol Revs 71:495–548CrossRefGoogle Scholar
  195. Vishnivetskaya TA, Petrova MA, Urbance J, Ponder M, Moyer CL, Gilichinsky DA, Tiedje JM (2006) Bacterial community in ancient Siberian permafrost as characterized by culture and culture-independent methods. Astrobiology 6:400–414PubMedCrossRefGoogle Scholar
  196. Wagner D, Kobabe S, Liebner S (2009a) Bacterial community structure and carbon turnover in permafrost-affected soils of the Lena Delta, northeastern Siberia. Can J Microbiol 55:73–83PubMedCrossRefGoogle Scholar
  197. Wagner M, Gierth A, Abdel-Mageed W, Jaspars J, Pathom-aree W, Goodfellow M, Bull AT, Horikoshi K, Fiedler H-P (2009b) Dermacozines: drugs from the abyss. In: Proceedings of the 15th international symposium on the biology of actinomycetes, Shanghai Jiaotong University, Shanghai, 20–25 August 2009Google Scholar
  198. Warnecke F, Sommaruga R, Sekar R, Hofer JS (2005) Abundances, identity, and growth state of actinobacteria in mountain lakes of different UV transparency. Appl Environ Microbiol 71:5551–5559PubMedCrossRefGoogle Scholar
  199. Weyland H (1969) Actinomycetes in North Sea and Atlantic Ocean sediments. Nature 223:858PubMedCrossRefGoogle Scholar
  200. White PL, Wynn-Williams DD, Russell NJ (2000) Diversity of thermal responses of lipid composition in the membranes of the dominant culturable members of an Antarctic fellfield soil bacterial community. Antarct Sci 12:386–393CrossRefGoogle Scholar
  201. Williams PG (2008) Panning for chemical gold: marine bacteria as a source of new therapeutics. Trends Biotechnol 27:45–52PubMedCrossRefGoogle Scholar
  202. Williams PG, Asolkar RN, Kondratyuk T, Pezzuto JM, Jensen PR, Fenical W (2007a) Saliniketals A and B, bicyclic polyketides from the marine actinomycete Salinispora arenicola. J Nat Prod 70:83–88PubMedCrossRefGoogle Scholar
  203. Williams PG, Miller ED, Asolkar RN, Jensen PR, Fenical PR (2007b) Arenicolides A-C, 26-membered ring macrolides from the marine actinomycete Salinispora arenicola. J Org Chem 72:5025–5034PubMedCrossRefGoogle Scholar
  204. Wilmes P, Andersson AF, Lefsrud MG, Wexler M, Shah M, Zhang B, Hettich RL, Bond PL, VerBerkmoes NC, Banfield JF (2008) Community proteogenomics highlights microbial strain-variant protein expression within activated sludge performing enhanced biological phosphorus removal. ISME J 2:853–864PubMedCrossRefGoogle Scholar
  205. Yakimov MM, Lünsdorf H, Golyshin PN (2003) Thermoleophilum album and Thermoleophilum minutum are culturable representatives of group 2 of the Rubrobacteridae (Actinobacteria). Int J Syst Evol Microbiol 53:377–380PubMedCrossRefGoogle Scholar
  206. Yarza P, Richtera M, Peplies J, Euzeby J, Amann R, Schleifer K-H, Ludwig W, Glöckner FO, Rosselló-Móra R (2008) The All-Species Living Tree project: A 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250PubMedCrossRefGoogle Scholar
  207. Yergeau E, Newsham KK, Pearce DA, Kowalchuk GA (2007) Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environ Microbiol 9:2670–2682PubMedCrossRefGoogle Scholar
  208. Yi H, Schumann P, Sohn K, Chun J (2004) Serinicoccus marinus gen. nov., sp. nov., a novel actinomycete with L-ornithine and L-serine in the peptidoglycan. Int J Syst Evol Microbiol 54:1585–1589PubMedCrossRefGoogle Scholar
  209. Yoon J-H, Kang S-J, Schumann P, Oh T-K (2006) Yonghaparkia alkaliphila gen. nov., sp. nov., a novel member of the family Microbacteriaceae isolated from an alkaline soil. Int J Syst Evol Microbiol 56:2415–2420PubMedCrossRefGoogle Scholar
  210. Yoshida A, Seo Y, Suzuki S, Nishino T, Kobayashi T, Hamada-Sato N, Kogure K, Imada C (2008) Actinomycetal community structures in seawater and freshwater examined by DGGE analysis of 16S rRNA gene fragments. Mar Biotechnol 10:554–563PubMedCrossRefGoogle Scholar
  211. Zhang DC, Wang HX, Cui HL, Yang Y, Liu HC, Dong XZ, Zhou PJ (2007) Cryobacterium psychrotolerans sp nov, a novel psychrotolerant bacterium isolated from the China No. 1 Glacier. Int J Syst Evol Microbiol 57:866–869PubMedCrossRefGoogle Scholar
  212. Zhang DC, Liu HC, Xin YH, Yu Y, Zhou PJ, Zhou YG (2008) Salinibacterium xinjiangense sp nov., a psychrophilic bacterium isolated from the China No. 1 glacier. Int J Syst Evol Microbiol 58:2739–2742PubMedCrossRefGoogle Scholar
  213. Zhang D-C, Schumann P, Liu H-C, Xin Y-H, Zhou Y-G, Schinner F, Margesin R (2010a) Arthrobacter alpinus sp. nov., a psychrophilic bacterium isolated from alpine soil. Int J Syst Evol Microbiol 60:2149–2153PubMedCrossRefGoogle Scholar
  214. Zhang Y-Q, Liu H-Y, Chen J, Yuan L-J, Sun W, Zhang L-X, Zhang Y-Q, Yu L-Y, Li W-J (2010b) Diversity of culturable actinobacteria from Qinghai-Tibet plateau, China. Antonie van Leeuwenhoek 98:213–223PubMedCrossRefGoogle Scholar
  215. Zhi XY, Yang LL, Wu JY, Tang SK, Li WJ (2007) Multiplex specific PCR for identification of the genera Actinopolyspora and Streptomonospora, two groups of strictly halophilic filamentous actinomycetes. Extremophiles 11:543–548PubMedCrossRefGoogle Scholar
  216. Zhi XY, Li WJ, Stackebrandt E (2009) An update of the structure and 16S rRNA gene sequence-based definition of the higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 59:589–608PubMedCrossRefGoogle Scholar
  217. Zobell CE, Morita RY (1959) Deep-sea bacteria. Galathea 1:139–154Google Scholar
  218. Zwart G, Crump BC, Agterveld MPKV, Hagen F, Han SK (2002) Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol 28:141–155CrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.School of BiosciencesUniversity of KentCanterburyUK

Personalised recommendations