Physiology of Marine Oligotrophic Ultramicrobacteria

  • Timothy J. Williams
  • Fabien Joux
  • Federico M. Lauro
  • Sabine Matallana-Surget
  • Ricardo Cavicchioli


All marine heterotrophic bacteria have to contend with the same challenge in the open ocean: extracting sufficient substrates for growth from a bulk nutrient-depleted environment. In response to this challenge, oligotrophs and copiotrophs have evolved distinct trophic strategies. Oligotrophs can subsist on low concentrations of substrates, and have a physiology attuned to achieving a relatively constant rate of growth under nutrient limiting conditions of carbon (organic), nitrogen, or phosphorus. The concentration of dissolved organic carbon (DOC) in the ocean is typically below 1 mgL−1 of which only a small fraction is metabolically available (Carlson and Ducklow 1996). One consequence of global warming is increased stratification of the water column, which decreases the transport of nutrients from the deep water to the surface, thereby decreasing bioavailable DOC for bacteria (Sarmiento et al. 2004). As a consequence, extreme-oligotrophic provinces have been expanding,...


Nutrient Patch Substrate Uptake Ambient Seawater Oligotrophic Bacterium Alanine Dehydrogenase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Agis M, Unanue M, Iriberri J, Herndl G (1998) Bacterial colonization and ectoenzymatic activity in artificial marine snow. Part II: Cleavage and uptake of carbohydrates. Microb Ecol 36:66–74PubMedCrossRefGoogle Scholar
  2. Aiyar SE, Gaal T, Gourse RL (2002) rRNA promoter activity in the fast-growing bacterium Vibrio natriegens. J Bacteriol 184:1349–1358PubMedCrossRefGoogle Scholar
  3. Akagi Y, Taga N (1980) Uptake of D-glucose and L-proline by oligotrophic and heterotrophic marine bacteria. Can J Microbiol 26:454–459PubMedCrossRefGoogle Scholar
  4. Alonso C, Pernthaler J (2006) Roseobacter and SAR11 dominate microbial glucose uptake in coastal North Sea waters. Environ Microbiol 8:2022–2230PubMedCrossRefGoogle Scholar
  5. Andersson A, Lee C, Azam F, Hagström Å (1985) Release of amino acids and inorganic nutrients by heterotrophic marine microflagellates. Mar Ecol Prog Ser 23:99–106CrossRefGoogle Scholar
  6. Assumpção MC, de Souza EM, Yates MG, de Oliveira PF, Benelli EM (2007) Purification and characterisation of Azospirillum brasilense N-truncated NtrX protein. Protein Expr Purif 53:302–308PubMedCrossRefGoogle Scholar
  7. Biers EJ, Sun S, Howard EC (2009) Prokaryotic genomes and diversity in surface ocean waters: interrogating the global ocean sampling metagenome. Appl Environ Microbiol 75:2221–2229PubMedCrossRefGoogle Scholar
  8. Boenigk J, Stadler P, Wiedlroither A, Hahn MW (2004) Strain-specific differences in the grazing sensitivities of closely related ultramicrobacteria affiliated with the Polynucleobacter cluster. Appl Environ Microbiol 70:5787–5793PubMedCrossRefGoogle Scholar
  9. Button DK (1991) Biochemical basis for whole-cell uptake kinetics: specific affinity, oligotrophic capacity, and the meaning of the Michaelis constant. Appl Environ Microbiol 57:2033–2038PubMedGoogle Scholar
  10. Carlson CA, Ducklow HW (1996) Growth of bacterioplankton and consumption of dissolved organic carbon in the Sargasso Sea. Aquat Microb Ecol 10:69–85CrossRefGoogle Scholar
  11. Cavicchioli R, Fegatella F, Ostrowski M, Eguchi M, Gottschal J (1999) Sphingomonads from marine environments. J Ind Microbiol Biotechnol 23:268–272PubMedCrossRefGoogle Scholar
  12. Cavicchioli R, Ostrowski M (2003) Ultramicrobacteria. Encyclopedia of life sciences. Nature Publishing, LondonGoogle Scholar
  13. Cavicchioli R, Ostrowski M, Fegatella F, Goodchild A, Guixa-Boixereu N (2003) Life under nutrient limitation in oligotrophic marine environments: an eco/physiological perspective of Sphingopyxis alaskensis (formerly Sphingomonas alaskensis). Microb Ecol 45:203–217PubMedCrossRefGoogle Scholar
  14. Commichau FM, Forchhammer K, Stülke J (2006) Regulatory links between carbon and nitrogen metabolism. Curr Opin Microbiol 9:167–172PubMedCrossRefGoogle Scholar
  15. Cottrell MT, Kirchman DL (2003) Contribution of major bacterial groups to bacterial biomass production (thymidine and leucine incorporation) in the Delaware estuary. Limnol Oceanogr 48:168–178CrossRefGoogle Scholar
  16. Deutscher J (2008) The mechanisms of carbon catabolite repression in bacteria. Curr Opin Microbiol 11:87–93PubMedCrossRefGoogle Scholar
  17. Eguchi M, Ishida Y (1990) Oligotrophic properties of heterotrophic bacteria and in situ heterotrophy activity in pelagic seawaters. FEMS Microbiol Ecol 73:23–30CrossRefGoogle Scholar
  18. Eguchi M, Nishikawa T, Macdonald K, Cavicchioli R, Gottschal JC, Kjelleberg S (1996) Responses to stress and nutrient availability by the marine ultramicrobacterium Sphingomonas sp. strain RB2256. Appl Environ Microbiol 62:1287–1294PubMedGoogle Scholar
  19. Eguchi M, Ostrowski M, Fegatella F, Bowman J, Nichols D, Nishino T, Cavicchioli R (2001) Sphingomonas alaskensis strain AFO1, an abundant oligotrophic ultramicrobacterium from the North Pacific. Appl Environ Microbiol 67:4945–4954PubMedCrossRefGoogle Scholar
  20. Fegatella F, Cavicchioli R (2000) Physiological responses to starvation in the marine oligotrophic ultramicrobacterium Sphingomonas sp. strain RB2256. Appl Environ Microbiol 66:2037–2044PubMedCrossRefGoogle Scholar
  21. Fegatella F, Lim J, Kjelleberg S, Cavicchioli R (1998) Implications of rRNA operon copy number and ribosome content in the marine oligotrophic ultramicrobacterium Sphingomonas sp. strain RB2256. Appl Environ Microbiol 64:4433–4438PubMedGoogle Scholar
  22. Feingersch R, Suzuki MT, Shmoish M, Sharon I, Sabehi G, Partensky F, Béjà O (2009) Microbial community genomics in eastern Mediterranean Sea surface waters. ISME J. doi:10.1038/ismej.2009.92Google Scholar
  23. Foerstner KU, von Mering C, Hooper SD, Bork P (2005) Environments shape the nucleotide composition of genomes. EMBO Rep 6:1208–1213PubMedCrossRefGoogle Scholar
  24. García-Fernández JM, de Marsac NT, Diez J (2004) Streamlined regulation and gene loss as adaptive mechanisms in Prochlorococcus for optimized nitrogen utilization in oligotrophic environments. Microbiol Mol Biol Rev 68:630–638PubMedCrossRefGoogle Scholar
  25. Giovannoni SJ, Britschgi TB, Moyer CL, Field KG (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:60–63PubMedCrossRefGoogle Scholar
  26. Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL, Baptista D, Bibbs L, Eads J, Richardson TH, Noordewier M, Rappé MS, Short JM, Carrington JC, Mathur EJ (2005a) Genome streamlining in a cosmopolitan oceanic bacterium. Science 309:1242–1245PubMedCrossRefGoogle Scholar
  27. Giovannoni SJ, Bibbs L, Cho JC, Stapels MD, Desiderio R, Vergin KL, Rappé MS, Laney S, Wilhelm LJ, Tripp HJ, Mathur EJ, Barofsky DF (2005b) Proteorhodopsin in the ubiquitous marine bacterium SAR11. Nature 438:82–85PubMedCrossRefGoogle Scholar
  28. Giovannoni S, Stingl U (2007) The importance of culturing bacterioplankton in the “omics” age. Nat Rev Microbiol 5:820–826PubMedCrossRefGoogle Scholar
  29. González JM, Sherr EB, Sherr BF (1990) Size-selective on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl Environ Microbiol 56:583–589PubMedGoogle Scholar
  30. González JM, Kiene RP, Moran MA (1999) Transformation of sulfur compounds by an abundant lineage of marine bacteria in the a-subclass of the class Proteobacteria. Appl Environ Microbiol 65:3810–3819PubMedGoogle Scholar
  31. Görke B, Stülke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:613–624PubMedCrossRefGoogle Scholar
  32. Häder DP, Kumar HD, Smith RC, Worrest RC (2007) Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem Photobiol Sci 6:267–285PubMedCrossRefGoogle Scholar
  33. Hoppe H-G, Ducklow H, Karrasch B (1993) Evidence for dependency of bacterial growth on enzymatic hydrolysis of particulate organic matter in the mesopelagic ocean. Mar Ecol Prog Ser 93:277–283CrossRefGoogle Scholar
  34. Humphrey B, Kjelleberg S, Marshall KC (1983) Responses of marine bacteria under starvation conditions at a solid-water interface. Appl Environ Microbiol 45:43–47PubMedGoogle Scholar
  35. Hunt DE, Gevers D, Vahora NM, Polz MF (2008) Conservation of the chitin utilization pathway in the Vibrionaceae. Appl Environ Microbiol 74:44–51PubMedCrossRefGoogle Scholar
  36. Irwin AJ, Oliver MJ (2009) Are ocean deserts getting larger? Geoph Res Lett 36:L18609CrossRefGoogle Scholar
  37. Joint I (2008) Unravelling the enigma of SAR11. ISME J 2:455–456PubMedCrossRefGoogle Scholar
  38. Joux F, Jeffrey WH, Lebaron P, Mitchell DL (1999) Marine bacterial isolates display diverse responses to UV-B radiation. Appl Environ Microbiol 65:3820–3827PubMedGoogle Scholar
  39. Kelly DJ, Thomas GH (2001) The tripartite ATP-independent periplasmic (TRAP) transporters of bacteria and archaea. FEMS Microbiol Rev 25:405–424PubMedCrossRefGoogle Scholar
  40. Kjelleberg S, Flardh K, Nyström T, Moriarty DJW (1993a) Growth limitation and starvation of bacteria. In: Ford T (ed) Aquatic microbiology: an ecological approach. Blackwell Scientific, Boston, pp 289–320Google Scholar
  41. Kjelleberg S, Alberston N, Flärdh K, Holmquist L, Jouper-Jaan Å, Marouga R, Östling J, Svenblad B, Weichart D (1993b) How do non-differentiating bacteria adapt to survival? Ant Van Leeuwen 63:293–316CrossRefGoogle Scholar
  42. Kumagai Y, Cheng Z, Lin M, Rikihisa Y (2006) Biochemical activities of three pairs of Ehrlichia chaffeensis two-component regulatory system proteins involved in inhibition of lysosomal fusion. Infect Immun 74:5014–5022PubMedCrossRefGoogle Scholar
  43. Hewson I, Paerl RW, Tripp HJ, Zehr JP, Karl DM (2009) Metagenomic potential of microbial assemblages in the surface waters of the central Pacific Ocean tracks variability in oceanic habitat. Limnol Oceanogr 54:1981–1994CrossRefGoogle Scholar
  44. Lauro FM, McDougald D, Thomas T, Williams TJ, Egan S, Rice S, DeMaere MZ, Ting L, Ertan H, Johnson J, Ferriera S, Lapidus A, Anderson I, Kyrpides N, Munk AC, Detter C, Han CS, Brown MV, Robb FT, Kjelleberg S, Cavicchioli R (2009) The genomic basis of trophic strategy in marine bacteria. Proc Natl Acad Sci USA 106:15519–15520CrossRefGoogle Scholar
  45. Lee C, Bada JF (1975) Amino acids in equatorial Pacific Ocean water. Earth Planet Sci Lett 26:61–68CrossRefGoogle Scholar
  46. Lee C, Bada JF (1977) Dissolved amino acids in the equatorial Pacific, the Sargasso Sea, and Biscayne Bay. Limnol Oceanogr 22:502–510CrossRefGoogle Scholar
  47. Malmstrom RR, Kiene RP, Cottrell MT, Kirchman DL (2004) Contribution of SAR11 bacteria to dissolved dimethylsulfoniopropionate and amino acid uptake in the North Atlantic Ocean. Appl Environ Microbiol 70:4129–4135PubMedCrossRefGoogle Scholar
  48. Martinez A, Tyson GW, DeLong EF (2010) Widespread known and novel phosphonate utilization pathways in marine bacteria revealed by functional screening and metagenomics analyses. Environ Microbiol 12:222–238Google Scholar
  49. Matallana-Surget S, Meador JA, Joux F, Douki T (2008) Effect of the GC content of DNA on the distribution of UVB-induced bipyrimidine photoproducts. Photobiol Photochem Sci 7:794–801CrossRefGoogle Scholar
  50. Matallana-Surget S, Joux F, Raftery M, Cavicchioli R (2009a) The response of the marine bacterium Sphingopyxis alaskensis to solar radiation assessed by quantitative proteomics. Environ Microbiol 11:2660–2675PubMedCrossRefGoogle Scholar
  51. Matallana-Surget S, Douki T, Cavicchioli R, Joux F (2009b) Remarkable resistance to UVB of the marine bacterium Photobacterium angustum explained by an unexpected role of photolyase. Photochem Photobiol Sci 8:1313–1320PubMedCrossRefGoogle Scholar
  52. Mauchline TH, Fowler JE, East AK, Sartor AL, Zaheer R, Hosie AHF, Poole PS, Finan TM (2006) Mapping the Sinorhizobium meliloti 1021 solute-binding protein-dependent transportome. Proc Natl Acad Sci USA 103:17933–17938PubMedCrossRefGoogle Scholar
  53. Médigue C, Krin E, Pascal G, Barbe V, Bernsel A, Bertin PN, Cheung F, Cruveiller S, D'Amico S, Duilio A, Fang G, Feller G, Ho C, Mangenot S, Marino G, Nilsson J, Parrilli E, Rocha EP, Rouy Z, Sekowska A, Tutino ML, Vallenet D, von Heijne G, Danchin A (2005) Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res 15:1325–1335PubMedCrossRefGoogle Scholar
  54. Metcalf WW, Wanner BL (1993) Evidence for a fourteen-gene, phnC to phnP locus for phosphonate metabolism in Escherichia coli. Gene 129:27–32PubMedCrossRefGoogle Scholar
  55. Moran MA, Buchan A, González JM, Heidelberg JF, Whitman WB, Kiene RP, Henriksen JR, King GM, Belas R, Fuqua C, Brinkac L, Lewis M, Johri S, Weaver B, Pai G, Eisen JA, Rahe E, Sheldon WM, Ye W, Miller TR, Carlton J, Rasko DA, Paulsen IT, Ren Q, Daugherty SC, Deboy RT, Dodson RJ, Durkin AS, Madupu R, Nelson WC, Sullivan SA, Rosovitz MJ, Haft DH, Selengut J, Ward N (2004) Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature 432:910–913PubMedCrossRefGoogle Scholar
  56. Moran MA, Belas R, Schell MA, González JM, Sun F, Sun S, Binder BJ, Edmonds J, Ye W, Orcutt B, Howard EC, Meile C, Palefsky W, Goesmann A, Ren Q, Paulsen I, Ulrich LE, Thompson LS, Saunders E, Buchan A (2007) Ecological genomics of marine Roseobacters. Appl Environ Microbiol 73:4559–4569PubMedCrossRefGoogle Scholar
  57. Morris RM, Rappé MS, Connon SA, Vergin KL, Siebold WA, Carlson CA, Giovannoni SJ (2002) SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420:806–810PubMedCrossRefGoogle Scholar
  58. Ostrowski M, Cavicchioli R, Blaauw M, Gottschal JC (2001) Specific growth rate plays a critical role in hydrogen peroxide resistance of the marine oligotrophic ultramicrobacterium Sphingomonas alaskensis strain RB2256. Appl Environ Microbiol 67:1292–1299PubMedCrossRefGoogle Scholar
  59. Ostrowski M, Fegatella F, Wasinger V, Guilhaus M, Corthals GL, Cavicchioli R (2004) Cross-species identification of proteins from proteome profiles of the marine oligotrophic ultramicrobacterium, Sphingopyxis alaskensis. Proteomics 4:1779–1788PubMedCrossRefGoogle Scholar
  60. Papa R, Glagla S, Danchin A, Schweder T, Marino G, Duilio A (2006) Proteomic identification of a two-component regulatory system in Pseudoalteromonas haloplanktis TAC125. Extremophiles 10:483–491PubMedCrossRefGoogle Scholar
  61. Pawlowski K, Klosse U, de Bruijn FJ (1991) Characterization of a novel Azorhizobium caulinodans ORS571 two-component regulatory system, NtrY/NtrX, involved in nitrogen fixation and metabolism. Mol Gen Genet 231:124–138PubMedCrossRefGoogle Scholar
  62. Rappé MS, Connon SA, Vergin KL, Giovannoni SJ (2002) Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418:630–633PubMedCrossRefGoogle Scholar
  63. Rava PS, Somma L, Steinman HM (1999) Identification of a regulator that controls stationary-phase expression of catalase-peroxidase in Caulobacter crescentus. J Bacteriol 191:6152–6159Google Scholar
  64. Rivkin RB, Anderson MR (1997) Inorganic nutrient limitation of oceanic bacterioplankton. Limnol Oceanogr 42:730–740CrossRefGoogle Scholar
  65. Sarmiento JL, Slater R, Barber R, Bopp L, Doney SC, Hirst AC, Kleypas J, Matear R, Mikolajewicz U, Monfray P, Soldatov V, Spall SA, Stouffer R (2004) Response of ocean ecosystems to climate warming. Glob Biogeochem Cycles 18:GB3003CrossRefGoogle Scholar
  66. Schut F, de Vries EJ, Gottschal JC, Robertson BR, Harder W, Prins RA, Button DK (1993) Isolation of typical marine bacteria by dilution culture: growth, maintenance, and characteristics of isolates under laboratory conditions. Appl Environ Microbiol 59:2150–2160PubMedGoogle Scholar
  67. Schut F, Jansen M, Gomes TM, Gottschal JC, Harder W, Prins RA (1995) Substrate uptake and utilization by a marine ultramicrobacterium. Microbiology 141:351–361PubMedCrossRefGoogle Scholar
  68. Schut F, Prins RA, Gottschal JC (1997a) Oligotrophy and pelagic marine bacteria: facts and fiction. Aquat Microb Ecol 12:177–202CrossRefGoogle Scholar
  69. Schut F, Gottschal JC, Prins RA (1997b) Isolation and characterization of the marine ultramicrobacterium Sphingomonas sp. strain RB2256. FEMS Microbiol Rev 20:363–369CrossRefGoogle Scholar
  70. Simo R, Archer SD, Pedros-Alio C, Gilpin L, Stelfox-Widdicombe CE (2002) Coupled dynamics of dimethylsulfoniopropionate and dimethylsulfide cycling and the microbial food web in surface waters of the North Atlantic. Limnol Oceanogr 47:53–61CrossRefGoogle Scholar
  71. Sowell SM, Wilhelm LJ, Norbeck AD, Lipton MS, Nicora CD, Barofsky DF, Carlson CA, Smith RD, Giovanonni SJ (2009) Transport functions dominate the SAR11 metaproteome at low-nutrient extremes in the Sargasso Sea. ISME J 3:93–105PubMedCrossRefGoogle Scholar
  72. Srinivasan S, Kjelleberg S (1998) Cycles of famine and feast: the starvation and outgrowth strategies of a marine Vibrio. J Biosci 23:501–511CrossRefGoogle Scholar
  73. Stocker R, Seymour JR, Samadani A, Hunt DE, Polz MF (2008) Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proc Natl Acad Sci USA 105:4209–4214PubMedCrossRefGoogle Scholar
  74. Street JH, Paytan A (2005) Iron, phytoplankton growth, and the carbon cycle. Met Ions Biol Syst 43:153–193PubMedGoogle Scholar
  75. Tédetti M, Sempéré R (2006) Penetration of ultraviolet radiation in the marine environment. A review. Photochem Photobiol 82:389–397PubMedCrossRefGoogle Scholar
  76. Thomas T, Egan S, Burg D, Ng C, Ting L, Cavicchioli R (2007) The integration of genomics and proteomics into marine, microbial ecology. Theme series on ‘Genomics, proteomics and metabolomics in marine ecology’. Mar Ecol Prog Ser 332:291–299CrossRefGoogle Scholar
  77. Ting L, Cowley MJ, Hoon SL, Guilhaus M, Raftery MJ, Cavicchioli R (2009) Normalization and statistical analysis of quantitative proteomics data generated by metabolic labeling. Mol Cell Proteomics 8:2227–2242PubMedCrossRefGoogle Scholar
  78. Tomii K, Kanehisa M (1998) A comparative analysis of ABC transporters in complete microbial genomes. Genome Res 8:1048–1059PubMedGoogle Scholar
  79. Tripp HJ, Kitner JB, Schwalbach MS, Dacey JW, Wilhelm LJ, Giovannoni SJ (2008) SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature 452:741–744PubMedCrossRefGoogle Scholar
  80. Tripp HJ, Schwalbach MS, Meyer MM, Kitner JB, Breaker RR, Giovannoni SJ (2009) Unique glycine-activated riboswitch linked to glycine-serine auxotrophy in SAR11. Environ Microbiol 11:230–238PubMedCrossRefGoogle Scholar
  81. White DC, Sutton SD, Ringelberg DB (1996) The genus Sphingomonas: physiology and ecology. Curr Opin Biotechnol 7:301–306PubMedCrossRefGoogle Scholar
  82. Williams TJ, Ertan H, Ting L, Cavicchioli R (2009) Carbon and nitrogen substrate utilization in the marine bacterium Sphingopyxis alaskensis strain RB2256. ISME J 3:1036–1052PubMedCrossRefGoogle Scholar
  83. Zech H, Thole S, Schreiber K, Kalhöfer D, Voget S, Brinkhoff T, Simon M, Schomburg D, Rabus R (2009) Growth phase-dependent global protein and metabolite profiles of Phaeobacter gallaeciensis strain DSM 17395, a member of the marine Roseobacter-clade. Proteomics 9:3677–3697PubMedCrossRefGoogle Scholar
  84. Zepp RG, Erickson DJ, Paul ND, Sulzberger B (2007) Interactive effects of solar UV radiation and climate change on biogeochemical cycling. Photochem Photobiol Sci 6:286–300PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • Timothy J. Williams
    • 1
  • Fabien Joux
    • 2
  • Federico M. Lauro
    • 1
  • Sabine Matallana-Surget
    • 2
  • Ricardo Cavicchioli
    • 1
  1. 1.School of Biotechnology and Biomolecular SciencesThe University of New South WalesSydneyAustralia
  2. 2.CNRS, Laboratoire d’Océanographie MicrobienneUniversité Pierre et Marie Curie-Paris 6Banyuls-sur-merFrance

Personalised recommendations