Ecology and Cultivation of Marine Oligotrophic Bacteria

  • Darin H. Hayakawa
  • Megan J. Huggett
  • Michael S. Rappé
Reference work entry

Though generally not perceived as an “extreme” environment, the global open ocean is a desert with respect to the organic and inorganic building blocks required to promote the growth of any potential inhabitants. In illuminated surface waters where light energy available for photosynthesis abounds, thermal stratification of the water column results in the constant starvation of (primarily microscopic) photoautotrophs for inorganic nutrients such as nitrogen and phosphorus. In the dark ocean interior, inorganic nutrients are generally in excess; however, organic carbon compounds are in short supply, and the stocks that are present are generally considered to be inaccessible as substrates to sustain active cell growth and metabolism. In spite of all of this, massive populations of microscopic cells abound in the global open ocean. Assessments based on gene- and genome-based measures have revealed a tremendous amount of diversity within the microbial plankton, but also that a vast...


Terminal Restriction Fragment Length Polymorphism Oxygen Minimum Zone Bacterioplankton Community Dissolve Organic Carbon Pool North Pacific Subtropical Gyre 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Achtman M, Wagner M (2008) Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol 6:31–440Google Scholar
  2. Alonso C, Pernthaler J (2006) Roseobacter and SAR11 dominate microbial glucose uptake in coastal North Sea waters. Environ Microbiol 8:2022–2030PubMedCrossRefGoogle Scholar
  3. Amann R, Krumholtz L, Stahl D (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172:762–770PubMedGoogle Scholar
  4. Aumont O, Bobb L, Schulz M (2008) What does temporal variability in aeolian dust deposition contribute to sea-surface iron and chlorophyll distributions? Geophys Res Lett 35:L07607CrossRefGoogle Scholar
  5. Benitez-Nelson CR, Bidigare RR, Dickey TD, Landry MR, Leonard CL, Brown SL, Nencioli F, Rii YM, Maiti K, Becker JW, Bibby TS, Black W, Cai W, Carlson CA, Chen F, Kuwahara VS, Mahaffey C, McAndrew PM, Quay PD, Rappé MS, Selph KE, Simmons MP, Yang EJ (2007) Mesoscale eddies drive increased silica export in the subtropical Pacific Ocean. Science 316:1017–1021PubMedCrossRefGoogle Scholar
  6. Benner R (2002) Chemical composition and reactivity. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Academic, San Diego, pp 59–90CrossRefGoogle Scholar
  7. Bent SJ, Forney LJ (2008) The tragedy of the uncommon: understanding limitations in the analysis of microbial diversity. ISME J 2:689–695PubMedCrossRefGoogle Scholar
  8. Biers EJ, Sun S, Howard EC (2009) Prokaryotic genomes and diversity in surface ocean waters: interrogating the Global Ocean Sampling metagenome. Appl Environ Microbiol 75:2221–2229PubMedCrossRefGoogle Scholar
  9. Button DK (1985) Kinetics of nutrient-limited transport and microbial growth. Microbiol Rev 49:270–297PubMedGoogle Scholar
  10. Button DK (1991) Biochemical basis for whole-cell uptake kinetics: specific affinity, oligotrophic capacity, and the meaning of the Michaelis constant. Appl Environ Microbiol 57:2033–2038PubMedGoogle Scholar
  11. Button DK, Garver JC (1966) Continuous culture of Torulopsis utilis: a kinetic study of oxygen limited growth. J Gen Microbiol 45:195–204PubMedGoogle Scholar
  12. Button DK, Schut F, Quang P, Martin R, Robertson BR (1993) Viability and isolation of marine bacteria by dilution culture: theory, procedures, and initial results. Appl Environ Microbiol 59:881–891PubMedGoogle Scholar
  13. Button DK, Robertson BR, Lepp PW, Schmidt TM (1998) A small, dilute-cytoplasm, high-affinity, novel bacterium isolated by extinction culture and having kinetic constants compatible with growth at ambient concentrations of dissolved nutrients in seawater. Appl Environ Microbiol 64:4467–4476PubMedGoogle Scholar
  14. Carlson CA, Morris R, Parsons R, Treusch AH, Giovannoni SJ, Vergin K (2009) Seasonal dynamics of SAR11 populations in the euphotic and mesopelagic zones of the northwestern Sargasso Sea. ISME J 3:283–295PubMedCrossRefGoogle Scholar
  15. Cho J, Giovannoni SJ (2004) Cultivation and growth characteristics of a diverse group of oligotrophic marine Gammaproteobacteria. Appl Environ Microbiol 70:432–440PubMedCrossRefGoogle Scholar
  16. Christian JR (2005) Biogeochemical cycling in the oligotrophic ocean: Redfield and non-Redfield models. Limnol Oceanogr 50:646–657CrossRefGoogle Scholar
  17. Christian JR, Lewis MR, Karl DM (1997) Vertical fluxes of carbon, nitrogen, and phosphorus in the North Pacific subtropical gyre near Hawaii. J Geophys Res 102:15667–15677CrossRefGoogle Scholar
  18. Connon SA, Giovannoni SJ (2002) High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol 68:3878–3885PubMedCrossRefGoogle Scholar
  19. Czechowska K, Johnson DR, van der Meer JR (2008) Use of flow cytometric methods for single-cell analysis in environmental microbiology. Curr Opin Microbiol 11:205–212PubMedCrossRefGoogle Scholar
  20. Eguchi M, Ostrowski M, Fegatella F, Bowman J, Nichols D, Nichino T, Cavicchioli R (2001) Sphingomonas alaskensis Strain AFO1, an abundant oligotrophic ultramicrobacterium from the North Pacific. Appl Environ Microbiol 67:4945–4954PubMedCrossRefGoogle Scholar
  21. Ewart CS, Meyers MK, Wallner ER, McGillicuddy DJ, Carlson CA (2008) Microbial dynamics in cyclonic and anticyclonic mode-water eddies in the northwestern Sargasso Sea. Deep Sea Res II 55:1334–1347CrossRefGoogle Scholar
  22. Finzi-Hart JA, Pett-Ridge J, Weber PK, Popa R, Fallon SJ, Gunderson T, Hutcheon ID, Nealson KH, Capone DG (2009) Fixation and fate of C and N in the cyanobacterium Trichodesmium using nanometer-scale secondary ion mass spectrometry. Proc Nat Acad Sci USA 106:6345–6350PubMedCrossRefGoogle Scholar
  23. Fuchs BM, Spring S, Teeling H, Quast C, Wulf J, Schattenhofer M, Yan S, Ferriera S, Johnson J, Glöckner FO, Amann R (2007) Characterization of a marine gammaproteobacterium capable of aerobic anoxygenic photosynthesis. Proc Natl Acad Sci USA 104:2891–2896PubMedCrossRefGoogle Scholar
  24. Fuhrman JA, Sleeter TD, Carlson CA, Proctor LM (1989) Dominance of bacterial biomass in the Sargasso Sea and its ecological implications. Mar Ecol Prog Ser 57:207–217CrossRefGoogle Scholar
  25. Fuhrman JA, McCallum K, Davis AA (1993) Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans. Appl Environ Microbiol 59:1294–1302PubMedGoogle Scholar
  26. Giovannoni S, Rappé M (2000) Evolution, diversity, and molecular ecology of marine prokaryotes. In: Kirchman DL (ed) Microbial ecology of the Oceans. Inc, Wiley-Liss, pp 47–84Google Scholar
  27. Giovannoni SJ, Stingl U (2005) Molecular diversity and ecology of microbial plankton. Nature 437:343–348PubMedCrossRefGoogle Scholar
  28. Giovannoni S, Stingl U (2007) The importance of culturing bacterioplankton in the “omics” age. Nature Microbiol Rev 5:820–826CrossRefGoogle Scholar
  29. Giovannoni SJ, Britschgi TB, Moyer CL, Field KG (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:60–63PubMedCrossRefGoogle Scholar
  30. Giovannoni SJ, Bibbs L, Cho J, Stapels MD, Desiderio R, Vergin KL, Rappé MS, Laney S, Wilhelm LJ, Tripp HJ, Mathur EJ, Barofsky DF (2005a) Proteorhodopsin in the ubiquitous marine bacterium SAR11. Nature 438:82–85PubMedCrossRefGoogle Scholar
  31. Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL, Baptista D, Bibbs L, Eads J, Richardson TH, Noordewier M, Rappé MS, Short J, Carrington JC, Mathur EJ (2005b) Genome streamlining in a cosmopolitan oceanic bacterium. Science 309:1242–1245PubMedCrossRefGoogle Scholar
  32. Giovannoni SJ, Hayakawa DH, Stingl U, Tripp HJ, Givan S, Cho J, Oh H, Kitner J, Vergin KL, Rappé MS (2008) The small genome of an abundant coastal ocean methylotroph. Environ Microbiol 10:1771–1782PubMedCrossRefGoogle Scholar
  33. Hansell DA, Carlson CA (2001) Biogeochemistry of total organic and nitrogen in the Sargasso Sea: control by convective overturn. Deep Sea Res II 48:1649–1667CrossRefGoogle Scholar
  34. Hutchison CA III, Venter JC (2006) Single-cell genomics. Nat Biotechnol 24:657–658PubMedCrossRefGoogle Scholar
  35. Hwang CY, Cho BC (2009) Spongiibacter tropicus sp nov. isolated from a Synechococcus culture. Int J Syst Evol Microbiol 59:2176–2179PubMedCrossRefGoogle Scholar
  36. Kaeberlein T, Lewis K, Epstein S (2002) Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296:1127–1129PubMedCrossRefGoogle Scholar
  37. Kirchman DL (1990) Limitation of bacterial growth by dissolved organic matter in the subarctic Pacific. Mar Ecol Prog Ser 62:47–54CrossRefGoogle Scholar
  38. Li T, Wu T, Mazéas L, Toffin L, Guerquin-Kern JL, Lebion G, Bouchez T (2008) Simultaneous analysis of microbial identity and function using NanoSIMS. Environ Microbiol 10:580–588PubMedCrossRefGoogle Scholar
  39. Liu WS, Kim HJ, Lucchetta EM, Du WB, Ismagilov RF (2009) Isolation, incubation, and parallel functional testing and identification by FISH of rare microbial single-copy cells from multi-species mixtures using the combination of chemistrode and stochastic confinement. Lab Chip 9:2153–2162PubMedCrossRefGoogle Scholar
  40. Malmstrom RR, Kiene RP, Cottrell MT, Kirchman DL (2004) Contribution of SAR11 bacteria to dissolved dimethylsulfoniopropionate and amino acid uptake in the North Atlantic Ocean. Appl Environ Microbiol 70:4129–4135PubMedCrossRefGoogle Scholar
  41. Malmstrom RR, Cottrell MT, Elifantz H, Kirchman DL (2005) Biomass production and assimilation of dissolved organic matter by SAR11 bacteria in the Northwest Atlantic Ocean. Appl Environ Microbiol 71:2979–2986PubMedCrossRefGoogle Scholar
  42. McAndrew PM, Bidigare RR, Karl DM (2008) Primary production and implications for metabolic balance in Hawaiian lee eddies. Deep Sea Res II 55:1300–1309CrossRefGoogle Scholar
  43. Moran MA, Buchan A, Gonzalez JM, Heidelberg JF, Whitman WB, Kiene RP, Henriksen JR, King GM, Belas R, Fuqua C, Brinkac L, Lewis M, Johri S, Weaver B, Pai G, Eisen JA, Rahe E, Sheldon WM, Ye W, Miller TR, Carlton J, Rasko DA, Paulsen IT, Ren W, Daugherty SC, Deboy RT, Dodson RJ, Durkin AS, Madupu R, Nelson WC, Sullivan SA, Rosovitz MJ, Haft DH, Selengut J, Ward N (2004) Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature 432:910–913PubMedCrossRefGoogle Scholar
  44. Morel A, Gentili B (2009) A simple band ratio technique to quantify the colored dissolved and detrital organic material from ocean color remotely sensed data. Remote Sens Environ 113:998–1011CrossRefGoogle Scholar
  45. Morris RM, Rappé MS, Connon SA, Vergin KL, Siebold WA, Carlson CA, Giovannoni SJ (2002) SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420:806–810PubMedCrossRefGoogle Scholar
  46. Morris RM, Vergin KL, Cho J, Rappé MS, Carlson CA, Giovannoni SJ (2005) Temporal and spatial response of bacterioplankton lineages to annual convective overturn at the Bermuda Atlantic Time-series Study site. Limnol Oceanogr 50:1687–1696CrossRefGoogle Scholar
  47. Orphan VJ, House CH (2009) Geobiological investigations using secondary ion mass spectrometry: analysis of extant and paleo-microbial processes. Geobiology 7:360–372PubMedCrossRefGoogle Scholar
  48. Poretsky RS, Gifford S, Rinta-Kanto J, Vila-Costa M, Moran MA (2009) Analyzing gene expression from marine microbial communities using environmental transcriptomics. J Vis Exp 24:1086. doi:10.3791/1086PubMedGoogle Scholar
  49. Rappé MS, Connon SA, Vergin KL, Giovannoni SJ (2002) Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418:630–633PubMedCrossRefGoogle Scholar
  50. Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of sea-water. In: Hill MN (ed) The Sea, 2nd edn. Wiley, New York, pp 26–77Google Scholar
  51. Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, Arellano A, Coleman M, Hauser L, Hess WR, Johnson ZI, Land M, Lindell D, Post AF, Regala W, Shah M, Shaw SL, Steglich C, Sullivan MB, Ting CS, Tolonen A, Webb EA, Zinser ER, Chisholm SW (2003) Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424:1042–1047PubMedCrossRefGoogle Scholar
  52. Rodrigue S, Malmstrom RR, Berlin AM, Birren BW, Henn MR, Chisholm SW (2009) Whole genome amplification and de novo assembly of single bacterial cells. PLoS ONE 4:e6864. doi:10.1371/journal.pone.0006864PubMedCrossRefGoogle Scholar
  53. Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, Wu D, Eisen JA, Hoffman JM, Remington K, Beeson K, Tran B, Smith H, Baden-Tilson H, Stewart C, Thorpe J, Freeman J, Andrews-Pfannkich C, Venter JE, Li K, Kravitz S, Heidelberg JF, Utterback T, Rogers Y, Falcón LI, Souza V, Bonilla-Rosso G, Eguiarte LE, Karl DM, Sathyendranath S, Platt T, Bermingham E, Gallardo V, Tamayo-Castillo G, Ferrari MR, Strausberg RL, Nealson K, Friedman R, Frazier M, Venter JC (2007) The Sorcerer II Global Ocean Sampling expedition: Northwest Atlantic through Eastern Tropical Pacific. PLoS Biol 5:398–431CrossRefGoogle Scholar
  54. Schut F, De Vries EJ, Gotitschal JC, Robertson BR, Harder W, Prins RA, Button DK (1993) Isolation of typical marine bacteria by dilution culture: growth, maintenance, and characteristics of isolates under laboratory conditions. Appl Environ Microbiol 59:2150–2160PubMedGoogle Scholar
  55. Schut F, Prins RA, Gottschal JC (1997) Oligotrophy and pelagic marine bacteria: facts and fiction. Aquat Microb Ecol 12:177–202CrossRefGoogle Scholar
  56. Schwalbach MS, Tripp HJ, Steindler L, Smith DP, Giovannoni SJ (2009) The presence of the glycolysis operon in SAR11 genomes is positively correlated with ocean productivity. Environ Microbiol 12:490–500PubMedCrossRefGoogle Scholar
  57. Shi Y, Tyson GW, DeLong EF (2009) Metatranscriptomics reveals unique microbial small RNAs in the ocean’s water column. Nature 459:266–269PubMedCrossRefGoogle Scholar
  58. Simon N, Cras AL, Foulon E, Lemée R (2009) Diversity and evolution of marine phytoplankton. CR Biol 332:159–170CrossRefGoogle Scholar
  59. Smith CJ, Osborn AM (2008) Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol Ecol 67:6–20CrossRefGoogle Scholar
  60. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103:12115–12120PubMedCrossRefGoogle Scholar
  61. Song J, Oh H, Cho J (2009) Improved culturability of SAR11 strains in dilution-to-extinction culturing from the East Sea, West Pacific Ocean. FEMS Microbiol Lett 295:141–147PubMedCrossRefGoogle Scholar
  62. Stingl U, Desiderio RA, Cho J, Vergin KL, Giovannoni SJ (2007) The SAR92 clade: an abundant coastal clade of culturable marine bacteria possessing proteorhodopsin. Appl Environ Microbiol 73:2290–2296PubMedCrossRefGoogle Scholar
  63. Suzuki MT, Preston CM, Chavez FP, DeLong EF (2001) Quantitative mapping of bacterioplankton populations in seawater: field tests across an upwelling plume in Monterey Bay. Aquat Microb Ecol 24:117–127CrossRefGoogle Scholar
  64. Treusch AH, Vergin KL, Finlay LA, Donatz MG, Burton RM, Carlson CA, Giovannoni SJ (2009) Seasonality and vertical structure of microbial communities in an ocean gyre. ISME J 3:1148–1163PubMedCrossRefGoogle Scholar
  65. Tripp HJ, Kitner JB, Schwalbach MS, Dacey JWH, Wilhelm LJ, Giovannoni SJ (2008) SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature 452:741–744PubMedCrossRefGoogle Scholar
  66. Tripp HJ, Schwalbach MS, Meyer MM, Kitner JB, Breaker RR, Giovannoni SJ (2009) Unique glycine-activated riboswitch linked to glycine-serine auxotrophy in SAR11. Environ Microbiol 11:230–238PubMedCrossRefGoogle Scholar
  67. Vaulot D, Eikrem W, Viprey M, Moreau H (2008) The diversity of small eukaryotic phytoplankton (< or =3 micron) in marine ecosystems. FEMS Microbiol Rev 32:795–820PubMedCrossRefGoogle Scholar
  68. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers Y, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74PubMedCrossRefGoogle Scholar
  69. Vila-Costa M, Pinhassi J, Alonso C, Pernthaler J, Simo R (2007) An annual cycle of dimethylsulfoniopropionate-sulfur and leucine assimilating bacterioplankton in the coastal NW Mediterranean. Environ Microbiol 9:2451–2463PubMedCrossRefGoogle Scholar
  70. Walsh DA, Zaikova E, Howes CG, Song YC, Wright JJ, Tringe SG, Tortell PD, Halla SJ (2009) Metagenome of a versatile chemolithoautotroph from expanding oceanic dead zones. Science 326:578–582PubMedCrossRefGoogle Scholar
  71. Wilhelm LJ, Tripp HJ, Givan SA, Smith DP, Giovannoni SJ (2007) Natural variation in SAR11 marine bacterioplankton genomes inferred from metagenomic data. Biol Direct 2:27. doi:10.1186/1745-6150-2-27PubMedCrossRefGoogle Scholar
  72. Zengler K, Toledo G, Rappé M, Elkins J, Mathur EJ, Short JM, Keller M (2002) Cultivating the uncultured. Proc Natl Acad Sci USA 99:15681–15686PubMedCrossRefGoogle Scholar
  73. Ziegler M, Lange M, Dott W (1990) Isolation and morphological and cytological characterization of filamentous bacteria from bulking sludge. Water Res 24:1437–1451CrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • Darin H. Hayakawa
    • 1
  • Megan J. Huggett
    • 1
  • Michael S. Rappé
    • 1
  1. 1.Hawaii Institute of Marine BiologySchool of Ocean and Earth Science and Technology, University of Hawaii at ManoaKaneoheUSA

Personalised recommendations