Genetics, Genomics, Evolution

  • Takuro Nunoura
  • Ken Takai
Reference work entry

Extent of Deep Biosphere as Extreme Environment

The deep biosphere is generally considered an extreme environment for organisms because of the living space limitation in sediments and rocks and the physical-chemical constraints of energy generation for life. In most parts of the biosphere, microbial growth and maintenance are sluggishly sustained by very low supplies of long-dead organic matters, reduced mineral substrates, thermally released gasses from organic and/or inorganic sources, or possible radiolytic molecular hydrogen (Fredrickson and Fletcher 2001; Colwell and Smith 2004; Blair et al. 2007). In contrast, some subsurface environments in and around fracture zones, petroleum reservoirs and subseafloor environments associated with hydrothermal activity, could provide both livable space and energy demand for prosperous formation of microbial communities. Especially in some fracture systems and the sediment-basaltic basement interface, it has been suggested that molecular oxygen...


Acid Mine Drainage Single Nucleotide Polymorphism Petroleum Reservoir Deep Subsurface Desulfovibrio Desulfuricans 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allen EE, Tyson GW, Whitaker RJ, Detter JC, Richardson PM, Banfield JF (2007) Genome dynamics in a natural archaeal population. Proc Natl Acad Sci USA 104:1883–1888PubMedCrossRefGoogle Scholar
  2. Andersson AF, Banfield JF (2008) Virus population dynamics and acquired virus resistance in natural microbial communities. Science 320:1047–1050PubMedCrossRefGoogle Scholar
  3. Bale SJ, Goodman K, Rochelle PA, Marchesi JR, Fry JC, Weightman AJ, Parkes RJ (1997) Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int J Syst Bacteriol 47:515–521PubMedCrossRefGoogle Scholar
  4. Balkwill DL, Drake GR, Reeves RH, Fredrickson JK, White DC, Ringelberg DB, Chandler DP, Romine MF, Kennedy DW, Spadoni CM (1997a) Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp. nov., Sphingomonas subterranea sp. nov., and Sphingomonas stygia sp. nov. Int J Syst Bacteriol 47:191–201PubMedCrossRefGoogle Scholar
  5. Balkwill DL, Reeves RH, Drake GR, Reeves JY, Crocker FH, King MB, Boone DR (1997b) Phylogenetic characterization of bacteria in the subsurface microbial culture collection. FEMS Microbiol Rev 20:201–216PubMedCrossRefGoogle Scholar
  6. Bastin ES (1926) The problem of the natural reduction of sulphates. Bull Am Assoc Petrol Geol 10:1270–1299Google Scholar
  7. Biddle JF, Fitz-Gibbon S, Schuster SC, Brenchley JE, House CH (2008) Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proc Natl Acad Sci USA 105:10583–10588PubMedCrossRefGoogle Scholar
  8. Blair CC, D’Hondt S, Spivack AJ, Kingsley RH (2007) Potential of radiolytic hydrogen for microbial respiration in subseafloor sediments. Astrobiology 7:951–970PubMedCrossRefGoogle Scholar
  9. Butler JE, Young ND, Lovley DR (2009) Evolution from a respiratory ancestor to fill syntrophic and fermentative niches: comparative genomics of six Geobacteriaceae species. BMC Genomics 10:103PubMedCrossRefGoogle Scholar
  10. Chivian D, Brodie EL, Alm EJ, Culley DE, Dehal PS, Desantis TZ, Gihring TM, Lapidus A, Lin LH, Lowry SR, Moser DP, Richardson PM, Southam G, Wanger G, Pratt LM, Andersen GL, Hazen TC, Brockman FJ, Arkin AP, Onstott TC (2008) Environmental genomics reveals a single-species ecosystem deep within Earth. Science 322:275–278PubMedCrossRefGoogle Scholar
  11. Colwell FS, Smith RP (2004) Unifying principles of the deep terrestrial and deep marine biosphere. In: Wilcock WSD, DeLong EF, Kelly DS, Baross JA, Cary SC (eds) The subseafloor biosphere at mid-ocean ridges, vol 144, Geophysical monograph. American Geophysical Union, Washington, pp 355–367CrossRefGoogle Scholar
  12. Conners SB, Mongodin EF, Johnson MR, Montero CI, Nelson KE, Kelly RM (2006) Microbial biochemistry, physiology, and biotechnology of hyperthermophilic Thermotoga species. FEMS Microbiol Rev 30:872–905PubMedCrossRefGoogle Scholar
  13. D’Hondt S, Jørgensen BB, Miller DJ, Batzke A, Blake R, Cragg BA, Cypionka H, Dickens GR, Ferdelman T, Hinrichs KU, Holm NG, Mitterer R, Spivack A, Wang G, Bekins B, Engelen B, Ford K, Gettemy G, Rutherford SD, Sass H, Skilbeck CG, Aiello IW, Guèrin G, House CH, Inagaki F, Meister P, Naehr T, Niitsuma S, Parkes RJ, Schippers A, Smith DC, Teske A, Wiegel J, Padilla CN, Acosta JL (2004) Distributions of microbial activities in deep subseafloor sediments. Science 306:2216–2221PubMedCrossRefGoogle Scholar
  14. de la Torre JR, Walker CB, Ingalls AE, Könneke M, Stahl DA (2008) Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ Microbiol 10:810–818PubMedCrossRefGoogle Scholar
  15. Dipippo JL, Nesbø CL, Dahle H, Doolittle WF, Birkland NK, Noll KM (2009) Kosmotoga olearia gen. nov., sp. nov., a thermophilic, anaerobic heterotroph isolated from oil production fluid. Int J Syst Evol Microbiol 59:2991–3000Google Scholar
  16. Eppley JM, Tyson GW, Getz WM, Banfield JF (2007) Genetic exchange across a species boundary in the genus Ferroplasma. Genetics 177:407–416PubMedCrossRefGoogle Scholar
  17. Feng L, Wang W, Cheng J, Ren Y, Zhao G, Gao C, Tang Y, Liu X, Han W, Peng X, Liu R, Wang L (2007) Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci USA 104:5602–5607PubMedCrossRefGoogle Scholar
  18. Fredrickson JK, Fletcher M (2001) Preface. In: Fredrickson JK, Fletcher M (eds) Subsurface microbiology and biogeochemistry. Wiley-Liss, New York, pp vii–viiiGoogle Scholar
  19. Fredrickson JK, Zachara JM, Kennedy DW, Dong H, Onstott TC, Hinman NW, Li SM (1998) Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferricoxide by a groundwater bacterium. Geochim Cosmochim Acta 62:3239–3257CrossRefGoogle Scholar
  20. Groh JL, Luo Q, Ballard JD, Krumholz LR (2005) A method adapting microarray technology for signature-tagged mutagenesis of Desulfovibrio desulfuricans G20 and Shewanella oneidensis MR-1 in anaerobic sediment survival experiments. Appl Environ Microbiol 71:7064–7074PubMedCrossRefGoogle Scholar
  21. Gupta N, Benhamida J, Bhargava V, Goodman D, Kain E, Kerman I, Nguyen N, Ollikainen N, Rodriguez J, Wang J, Lipton MS, Romine M, Bafna V, Smith RD, Pevzner PA (2008) Comparative proteogenomics: combining mass spectrometry and comparative genomics to analyze multiple genomes. Genome Res 18:1133–1142PubMedCrossRefGoogle Scholar
  22. Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344–352PubMedCrossRefGoogle Scholar
  23. Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever M, Lauer A, Suzuki M, Takai K, Delwiche M, Colwell FS, Nealson KH, Horikoshi K, D’Hondt S, Jørgensen BB (2006) In search of the deep biosphere: biogeographical distribution and diversity of microbes in deep marine sediments associated with methane hydrates on the Pacific Ocean Margin. Proc Natl Acad Sci USA 103:2815–2820PubMedCrossRefGoogle Scholar
  24. Kendall MM, Liu Y, Sieprawska-Lupa M, Stetter KO, Whitman WB, Boone DR (2006) Methanococcus aeolicus sp. nov., a mesophilic, methanogenic archaeon from shallow and deep marine sediments. Int J Syst Evol Microbiol 56:1525–1529PubMedCrossRefGoogle Scholar
  25. Kobayashi T, Koide O, Mori K, Shimamura S, Matsuura T, Miura T, Takaki Y, Morono Y, Nunoura T, Imachi H, Inagaki F, Takai K, Horikoshi K (2008) Phylogenetic and enzymatic diversity of deep subseafloor aerobic microorganisms in organics- and methane-rich sediments off Shimokita Peninsula. Extremophiles 12:519–527PubMedCrossRefGoogle Scholar
  26. Lien T, Madsen M, Rainey FA, Birkeland NK (1998) Petrotoga mobilis sp. nov., from a North Sea oil-production well. Int J Syst Bacteriol 48:1007–1013PubMedCrossRefGoogle Scholar
  27. Lin LH, Wang PL, Rumble D, Lippmann-Pipke J, Boice E, Pratt LM, Sherwood Lollar B, Brodie EL, Hazen TC, Andersen GL, DeSantis TZ, Moser DP, Kershaw D, Onstott TC (2006) Long-term sustainability of a high-energy, low-diversity crustal biome. Science 314:479–482PubMedCrossRefGoogle Scholar
  28. Liu C, Gorby YA, Zachara JM, Fredrickson JK, Brown CF (2002) Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria. Biotechnol Bioeng 80:637–649PubMedCrossRefGoogle Scholar
  29. Lo I, Denef VJ, Verberkmoes NC, Shah MB, Goltsman D, DiBartolo G, Tyson GW, Allen EE, Ram RJ, Detter JC, Richardson P, Thelen MP, Hettich RL, Banfield JF (2007) Strain-resolved community proteomics reveals recombining genomes of acidophilic bacteria. Nature 446:537–541PubMedCrossRefGoogle Scholar
  30. Luo Q, Hixson KK, Callister SJ, Lipton MS, Morris BE, Krumholz LR (2007) Proteome analysis of Desulfovibrio desulfuricans G20 mutants using the accurate mass and time (AMT) tag approach. J Proteome Res 6:3042–3053PubMedCrossRefGoogle Scholar
  31. Magot M, Ollivier B, Patel BK (2000) Microbiology of petroleum reservoirs. Antonie Leeuwenhoek 77:103–116PubMedCrossRefGoogle Scholar
  32. Mardanov AV, Ravin NV, Svetlitchnyi VA, Beletsky AV, Miroshnichenko ML, Bonch-Osmolovskaya EA, Skryabin KG (2009) Metabolic versatility and indigenous origin of the archaeon Thermococcus sibiricus, isolated from a siberian oil reservoir, as revealed by genome analysis. Appl Environ Microbiol 75:4580–4588PubMedCrossRefGoogle Scholar
  33. Mikuchi JA, Liu Y, Delwiche M, Colwell FS, Boone DR (2003) Isolation of a methanogen from deep marine sediments that contain methane hydrates, and description of Methanoculleus submarines sp. nov. Appl Environ Microbiol 69:3311–3316CrossRefGoogle Scholar
  34. Nunoura T, Hirayama H, Takami H, Oida H, Nishi S, Shimamura S, Suzuki Y, Inagaki F, Takai K, Nealson KH, Horikoshi K (2005) Genetic and functional properties of uncultivated thermophilic crenarchaeotes from a subsurface gold mine as revealed by analysis of genome fragments. Environ Microbiol 7:1967–1984PubMedCrossRefGoogle Scholar
  35. Payne RB, Gentry DM, Rapp-Giles BJ, Casalot L, Wall JD (2002) Uranium reduction by Desulfovibrio desulfuricans strain G20 and a cytochrome c3 mutant. Appl Environ Microbiol 68:3129–3132PubMedCrossRefGoogle Scholar
  36. Reysenbach AL (2001) Phylum BII. Thermotogae phy. nov. In: Boon DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, The archaea and the deeply branching bacteria. Springer, New York, pp 369–393CrossRefGoogle Scholar
  37. Rodrigues DF, Ivanova N, He Z, Huebner M, Zhou J, Tiedje JM (2008) Architecture of thermal adaptation in an Exiguobacterium sibiricum strain isolated from 3 million year old permafrost: a genome and transcriptome approach. BMC Genomics 9:547PubMedCrossRefGoogle Scholar
  38. Roh Y, Liu SV, Li G, Huang H, Phelps TJ, Zhou J (2002) Isolation and characterization of metal-reducing thermoanaerobacter strains from deep subsurface environments of the Piceance Basin, Colorado. Appl Environ Microbiol 68:6013–6020PubMedCrossRefGoogle Scholar
  39. Roussel EG, Bonavita MA, Querellou J, Cragg BA, Webster G, Prieur D, Parkes RJ (2008) Extending the sub-sea-floor biosphere. Science 320:1046PubMedCrossRefGoogle Scholar
  40. Takai K, Inagaki F, Horikoshi K (2004) Unifying principles of the deep terrestrial and deep marine biosphere. In: Wilcock WSD, DeLong EF, Kelly DS, Baross JA, Cary SC (eds) The subseafloor biosphere at mid-ocean ridges, vol 144, Geophysical monograph. American Geophysical Union, Washington, pp 369–381CrossRefGoogle Scholar
  41. Takai K, Nakagawa S, Reysenbach AL, Hoek J (2006) Microbial ecology of Mid-Ocean ridges and Back-Arc basins. In Back-Arc Spreading Systems, Geological, Biological, Chemical and Physical Interactions. Edited by Christie DM, Fisher CR, Lee SM, Givens S. Geophysical Monograph Series 166: pp185–213. American Geophysical UnionGoogle Scholar
  42. Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008) Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Nat Acad Sci USA 105:10949–10954PubMedCrossRefGoogle Scholar
  43. Teske A, Biddle JF (2008) Analysis of deep subsurface microbial communities by functional genes and genomics. In: Dilek Y, Furnes H, Muehlenbachs K (eds) Links between geological processes, microbial activities & evolution of life. Springer, Dordrecht, pp 159–176CrossRefGoogle Scholar
  44. Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43PubMedCrossRefGoogle Scholar
  45. VerBerkmoes NC, Denef VJ, Hettich RL, Banfield JF (2009) Systems biology: functional analysis of natural microbial consortia using community proteomics. Nat Rev Microbiol 7:196–205PubMedCrossRefGoogle Scholar
  46. Wall JD, Murnan T, Argyle J, English RS, Rapp-Giles BJ (1996) Transposon mutagenesis in Desulfovibrio desulfuricans: development of a random mutagenesis tool from Tn7. Appl Environ Microbiol 62:3762–3767PubMedGoogle Scholar
  47. Weimer PJ, Vankavelaar MJ, Michel CB (1988) Effect of phosphate on the corrosionof carbon-steel and on the composition of corrosion products in 2-stage continuous cultures of Desulfovibrio desulfuricans. Appl Environ Microbiol 54:386–396PubMedGoogle Scholar
  48. Zhaxybayeva O, Swithers KS, Lapierre P, Fournier GP, Bickhart DM, DeBoy RT, Nelson KE, Nesbø CL, Doolittle WF, Gogarten JP, Noll KM (2009) On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales. Proc Natl Acad Sci USA 106:5865–5870PubMedCrossRefGoogle Scholar
  49. Zillig W, Reysenbach AL (2001) Class IV. Thermococci class. nov. In: Boon DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, The archaea and the deeply branching bacteria. Springer, New York, pp 341–348Google Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of BiogeosciencesJapan Agency for Marine-Earth Science & Technology (JAMSTEC)YokosukaJapan

Personalised recommendations