Reference work entry

Cultivation of Microorganisms from Deep Biosphere

Scientific investigations into deep biosphere were stimulated by demands for petroleum, and subsequent exploration and study of oil fields and oil-bearing environments. Several of the early investigations provided successful cultivations of sulfate-reducing bacteria from groundwater samples collected from oil fields at depths of 150–600 m below land surface (mbls) (Bastin 1926). Although such early studies suggested the presence of microorganisms in deep subsurface environments, it was still very unclear due to the primitive microbiological sampling procedures whether the microbial isolates were truly indigenous to the subsurface environments or not, and from where the microbial cells were derived.

In the late 1970s and early 1980s, emerging groundwater quality issues in the USA and other countries led to further investigations of microorganisms living in shallow and deep groundwater and aquifer environments (Fredrickson and Fletcher 2001...


Subsurface Environment Hydrogenotrophic Methanogen Deep Subsurface Deep Biosphere Mariana Trench 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adkins JP, Madigan MT, Mandelco L, Woese CR, Tanner RS (1993) Arhodomonas aquaeolei gen. nov., sp. nov., an aerobic, halophilic bacterium isolated from a subterranean brine. Int J Syst Bacteriol 43:514–520PubMedCrossRefGoogle Scholar
  2. Allen TD, Kraus PF, Lawson PA, Drake GR, Balkwill DL, Tanner RS (2008) Desulfovibrio carbinoliphilus sp. nov., a benzyl alcohol-oxidizing, sulfate-reducing bacterium isolated from a gas condensate-contaminated aquifer. Int J Syst Evol Microbiol 58:1313–1317PubMedCrossRefGoogle Scholar
  3. Bale SJ, Goodman K, Rochelle PA, Marchesi JR, Fry JC, Weightman AJ, Parkes RJ (1997) Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan sea. Int J Syst Bacteriol 47:515–521PubMedCrossRefGoogle Scholar
  4. Balkwill DL, Kieft TL, Tsukuda T, Kostandarithes HM, Onstott TC, Macnaughon S, Bownas J, Fredrickson JK (2004) Identification of iron-reducing Thermus strains as Thermus scotoductus. Extremophiles 8:37–44PubMedCrossRefGoogle Scholar
  5. Barnes SP, Bradbrook SD, Cragg BA, Marchesi JR, Weightman AJ, Fry JC, Parkes RJ (1998) Isolation of sulfate-reducing bacteria from deep sediment layers of the Pacific Ocean. Geomicrobiol J 15:67–83CrossRefGoogle Scholar
  6. Basso O, Caumette P, Magot M (2005) Desultovibrio putealis sp nov., a novel sulfate-reducing bacterium isolated from a deep subsurface aquifer. Int J Syst Evol Microbiol 55:101–104PubMedCrossRefGoogle Scholar
  7. Bastin E (1926) The presence of sulphate reducing bacteria in oil field water. Science 63:21–24PubMedCrossRefGoogle Scholar
  8. Batzke A, Engelen B, Sass H, Cypionka H (2007) Phylogenetic and physiological diversity of cultured deep-biopshere bacteria from Equatorial Pacific Ocean and Peru Margin sediments. Geomicrobiol J 24:261–273CrossRefGoogle Scholar
  9. Belyaev SS, Obraztsova AY, Laurinavichius KS, Bezrukova LV (1987) Charactristics of rod-shaped methane-producing bacteria isolated from an oil pool and the description of Methanobacterium ivanovii sp. nov. Microbiology 55:1014–1020 (English translation of Mikrobiologiya)Google Scholar
  10. Bernhardt G, Jaenicke R, Ludemann HD, Konig H, Stetter KO (1988) High-pressure enhances the growth-rate of the thermophilic archaebacterium Methanococcus thermolithotrophicus without extending its temperature-range. Appl Environ Microbiol 54:1258–1261PubMedGoogle Scholar
  11. Bhupathiraju VK, McLnerney MJ, Woese CR, Tanner RS (1999) Haloanaerobium kushneri sp. nov., an obligately halophilic, anaerobic bacterium from an oil brine. Int J Syst Bacteriol 49:953–960PubMedCrossRefGoogle Scholar
  12. Bhupatiraju VK, Oren A, Sharma PK, Tanner RS, Woese CR, McInerney MJ (1994) Haloanaerobium salsugo sp. nov., a moderately halophilic, anaerobic bacterium from a subterranean brine. Int J Syst Bacteriol 44:565–572CrossRefGoogle Scholar
  13. Biddle JF, Fitz-Gibbon S, Schuster SC, Brenchley JB, House CH (2008) Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proc Natl Acad Sci USA 105:10583–10588PubMedCrossRefGoogle Scholar
  14. Bischoff JL, Rosenbauer RJ (1988) Liquid-vapor relations in the critical region of the system NaCl-H2O from 380 to 415°C: a refined determination of the critical point and two-phase boundary of seawater. Geochim Cosmochim Acta 52:2121–2126CrossRefGoogle Scholar
  15. Blair CC, D’Hondt S, Spivack AJ, Kingsley RH (2007) Radiolytic hydrogen and microbial respiration in subsurface sediments. Astrobiology 7:951–970PubMedCrossRefGoogle Scholar
  16. Blöchl E, Rachel R, Burgraff S, Hafenbradl D, Jannasch HW, Stetter KO (1997) Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113°C. Extremophiles 1:14–21PubMedCrossRefGoogle Scholar
  17. Bonch-Osmolovskaya E, Miroshnichenko ML, Lebedinsky AV, Chernyh NA, Nazina TN, Ivoilov VS, Belyaev SS, Boulygina ES, Lysov YP, Perov AN, Mirzabekov AD, Hippe H, Stackebrandt E, L’Haridon S, Jeanthon C (2003) Radioisotopic, culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental high-temperature petroleum reservoir. Appl Environ Microbiol 69:6143–6151PubMedCrossRefGoogle Scholar
  18. Boone DR, Liu Y, Zhao ZJ, Balkwill DL, Drake GR, Stevens TO, Aldrich HC (1995) Bacillus infernus sp. nov., an Fe(III)- and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. Int J Syst Bacteriol 45:441–448PubMedCrossRefGoogle Scholar
  19. Brown MG, Balkwill DL (2005) Antibiotic resistance in bacteria isolated from the deep terrestrial subsurface. Microbial Ecol 57:484–493CrossRefGoogle Scholar
  20. Brown MG, Balkwill DL (2009) Antibiotic resistance in bacteria isolated from the deep terrestrial subsurface. Microb Ecol 57:484–493PubMedCrossRefGoogle Scholar
  21. Cayol JL, Ollivier B, Patel BKC, Ravot G, Magot M, Ageron E, Grimont PA, Garcia JL (1995) Description of Thermoanaerobacter brockii subsp. lactiethylicus subsp. nov., isolated from a deep subsurface French oil well, a proposal to reclassify Thermoanaerobacter finnii as Thermoanaerobacter brockii subsp. finnii comb. nov., and an emended description of Thermoanaerobacter brockii. Int J Syst Bacteriol 45:783–789PubMedCrossRefGoogle Scholar
  22. Christensen B, Torsvik T, Lien T (1992) Immunomagnetically captured thermophilic sulfate-reducing bacteria from North Sea oil field waters. Appl Environ Microbiol 58:1244–1248PubMedGoogle Scholar
  23. Coates JD, Bhupathiraju VK, Achenbach LA, Mcinerney MJ, Lovley DR (2001) Geobacter hydrogenophilus, Geobacter chapellei and Geobacter grbiciae, three new, strictly anaerobic, dissimilatory Fe(III)-reducers. Int J Syst Evol Microbiol 51:581–588PubMedGoogle Scholar
  24. D’Hondt S, Jørgensen BB, Miller DJ, Batzke A, Blake R, Cragg BA, Cypionka H, Dickens GR, Ferdelman T, Hinrichs K-U, Holm NG, Mitterer R, Spivack A, Wang G, Bekins B, Engelen B, Ford K, Gettemy G, Rutherford SD, Sass H, Skilbeck CG, Aiello IW, Guèrin G, House CH, Inagaki F, Meister P, Naehr T, Niitsuma S, Parkes RJ, Schippers A, Smith DC, Teske A, Wiegel J, Padilla CN, Acosta JLS (2004) Distributions of microbial activities in deep subseafloor sediments. Science 306:2216–2221PubMedCrossRefGoogle Scholar
  25. da Cunha CD, Rosado AS, Sebastian GV, Seldin L, Weid IVD (2006) Oil biodegradation by Bacillus strains isolated from the rock of an oil reservoir located in a deep-water production basin in Brazil. Appl Microbiol Biotechnol 73:949–959PubMedCrossRefGoogle Scholar
  26. Daumas S, Cordruwisch R, Garcia JL (1988) Desulfotomaculum geothermicum sp. nov., a thermophilic, fatty acid-degrading, sulfate-reducing bacterium isolated with H2 from geothermal groundwater. Antonie Leeuwenhoek 54:165–178PubMedCrossRefGoogle Scholar
  27. Davey ME, Wood WA, Key R, Nakamura K, Stahl DA (1993) Isolation of 3 species of Geotoga and Petrotoga – 2 new genera, representing a new lineage in the bacterial line of descent distantly related to the Thermotogales. Syst Appl Microbiol 16:191–200CrossRefGoogle Scholar
  28. Davidova IA, Duncan KE, Choi OK, Suflita JM (2006) Desulfoglaeba alkanexedens gen. nov., sp. nov., an n-alkane-degrading, sulfate-reducing bacterium. Int J Syst Evol Microbiol 56:2737–2742PubMedCrossRefGoogle Scholar
  29. Deming JW, Baross JA (1993) Deep-sea smoker – windows to a subsurface biosphere. Geochim Cosmochim Acta 57:3219–3230PubMedCrossRefGoogle Scholar
  30. DiPippo JL, Nesbø CL, Dahle H, Doolittle WF, Birkeland NK Noll KM (2009) Kosmotoga olearia gen. nov., sp. nov., a thermophilic, anaerobic heterotroph isolated from Troll B oil production fluid in the North Sea. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.008045-0PubMedGoogle Scholar
  31. Doerfert SN, Reichlen M, Iyer P, Wang M, Ferry JG (2009) Methanolobus zinderi sp nov., a methylotrophic methanogen isolated from a deep subsurface coal seam. Int J Syst Evol Microbiol 59:1064–1069PubMedCrossRefGoogle Scholar
  32. Dopson M, Sustin CB, Hind A, Bowman JP, Bond PL (2004) Characterization of Ferroplasma isolates and Ferroplasma acidarmanus sp nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments. Appl Environ Microbiol 70:2079–2088PubMedCrossRefGoogle Scholar
  33. Edwards KJ, Bond PL, Gihring TM, Banfield JF (2000) An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287:1796–1799PubMedCrossRefGoogle Scholar
  34. Fardeau ML, Ollivier B, Patel BKC, Magot M, Thomas P, Rimbault A, Rocchiccioli F, Garcia JL (1997) Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol 47:1013–1019PubMedCrossRefGoogle Scholar
  35. Fardeau ML, Magot M, Thomas P, Garcia JL, Ollivier B (2000) Thermoanaerobacter subterraneus sp nov., a novel thermophile isolated from oilfield water. Int J Syst Evol Microbiol 50:2141–2149PubMedCrossRefGoogle Scholar
  36. Fardeau ML, Goulhen F, Bruschi M, Khelifi N, Cayol JL, Ignatiadis I, Guyot F, Ollivier B (2009) Archaeoglobus fulgidus and Thermotoga elfii, thermophilic Isolates from Deep Geothermal Water of the Paris Basin. Geomicrobiol J 26:119–130CrossRefGoogle Scholar
  37. Feng Y, Cheng L, Zhang X, Li X, Deng Y, Zhang H (2009) Thermococcoides shengliensis gen. nov., sp. nov., representing a novel genus of the order Thermotogales from oil-production fluid. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.013912-0Google Scholar
  38. Finster KW, Cockell CS, Voytek MA, Gronstal AL, Kjeldsen KU (2009) Description of Tessaracoccus profundi sp.nov., a deep-subsurface actinobacterium isolated from a Chesapeake impact crater drill core (940 m depth). Antonie Leeuwenhoek 96:515–526PubMedCrossRefGoogle Scholar
  39. Fredrickson JK, Fletcher M (2001) Preface. In: Fredrickson JK, Fletcher M (eds) Subsurface microbiology and biogeochemistry. Wiley-Liss, New York, pp vii–viiiGoogle Scholar
  40. Fru EC, Athar R (2008) In situ bacterial colonization of compacted bentonite under deep geological high-level radioactive waste repository conditions. Appl Microbiol Biotechnol 79:499–510CrossRefGoogle Scholar
  41. Galushko AS, Rosanova EP (1991) Desulfobacterium cetonicum sp. nov., a sulfate-reducing bacterium oxidizing fatty acids and ketones. Microbiology 60:102–107 (English translation of Mikrobiologiya)Google Scholar
  42. Gevertz D, Telang AJ, Voordouw G, Jenneman GE (2000) Isolation and characterization of strains CVO and FWKOB, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine. Appl Environ Microbiol 66:2491–2501PubMedCrossRefGoogle Scholar
  43. Greene AC, Patel BKC, Sheehy AJ (1997) Deferribacter thermophilus gen nov, sp nov, a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir. Int J Syst Bacteriol 47:505–509PubMedCrossRefGoogle Scholar
  44. Greene AC, Patel BKC, Yacob S (2009) Geoalkalibacter subterraneus sp nov., an anaerobic Fe(III)- and Mn(IV)-reducing bacterium from a petroleum reservoir, and emended descriptions of the family Desulfuromonadaceae and the genus Geoalkalibacter. Int J Syst Evol Microbiol 59:781–785PubMedCrossRefGoogle Scholar
  45. Gruber C, Legat A, Pfaffenhuemer M, Radax C, Weidler G, Busse HJ Stan-Lotter H (2004) Halobacterium noricense sp nov., an archaeal isolate from a bore core of an alpine Permian salt deposit, classification of Halobacterium sp NRC-1 as a strain of H. salinarum and emended description of H. salinarum. Extremophiles 8:431–439PubMedCrossRefGoogle Scholar
  46. Hirayama H, Takai K, Inagaki F, Nealson KH, Horikoshi K (2005) Thiobacter subterraneus gen. nov., sp. nov., an obligately chemolithoautotrophic, thermophilic, sulfur-oxidizing bacterium from a subsurface hot aquifer. Int J Syst Evol Microbiol 55:467–472PubMedCrossRefGoogle Scholar
  47. Huu NB, Denner EBM, Ha DTC, Wanner G, Stan-Lotter H (1999) Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. Int J Syst Bacteriol 49:367–375PubMedCrossRefGoogle Scholar
  48. Inagaki F, Takai K, Komatsu T, Kanematsu T, Fujioka K, Horikoshi K (2001) Archaeology of archaea reveals evidence of Pleistogene thermal events concealed in deep-sea subseafloor sediments. Extremophiles 5:385–392PubMedCrossRefGoogle Scholar
  49. Inagaki F, Takai K, Hirayama H, Yamato Y, Nealson KH, Horikoshi K (2003a) Distribution and phylogenetic diversity of the subsurface microbial community in a Japanese epithermal gold mine. Extremophiles 7:307–317PubMedCrossRefGoogle Scholar
  50. Inagaki F, Suzuki M, Takai K, Oida H, Sakamoto T, Aoki K, Nealson KH, Horikoshi K (2003b) Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk. Appl Environ Microbiol 69:7224–7235PubMedCrossRefGoogle Scholar
  51. Jeanthon C, Reysenbach AL, L’Haridon S, Gambacorta A, Pace NR, Glenat P, Prieur D (1995) Thermotoga subterranea sp. nov., a new thermophilic bacterium isolated from a continental oil reservoir. Arch Microbiol 164:91–97PubMedCrossRefGoogle Scholar
  52. Jorgensen BB, Boetius A (2007) Feast and famine – microbial life in the deep-sea bed. Nat Rev Microbiol 5:770–781PubMedCrossRefGoogle Scholar
  53. Kaksonen AH, Spring S, Schumann P, Kroppenstedt RM, Puhakka JA (2006) Desulfotomaculum thermosubterraneum sp nov., a thermophilic sulfate-reducer isolated from an underground mine located in a geothermally active area. Int J Syst Evol Microbiol 56:2603–2608PubMedCrossRefGoogle Scholar
  54. Kalyuzhnaya MG, Khmelenina VN, Kotelnikova S, Holmquist L, Pedersen K, Trotsenko YA (1999) Methylomonas scandinavica sp nov., a new methanotrophic psychrotrophic bacterium isolated from deep igneous rock ground water of Sweden. Syst Appl Microbiol 22:565–572PubMedCrossRefGoogle Scholar
  55. Kanso S, Patel BKC (2003) Microvirga subterranea gen. nov., sp. nov., a moderate thermophile from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 53:401–406PubMedCrossRefGoogle Scholar
  56. Kanso S, Patel BKC (2004) Phenylobacterium lituiforme sp. nov., a moderately thermophilic bacterium from a subsurface aquifer, and emended description of the genus Phenylobacterium. Int J Syst Evol Microbiol 54:2141–2146PubMedCrossRefGoogle Scholar
  57. Kashefi K, Lovley D (2003) Extending the upper temperature limit for life. Science 301:934PubMedCrossRefGoogle Scholar
  58. Kato C, Li L, Tamaoka J, Horikoshi K (1997) Molecular analyses of the sediment of the 11, 000-m deep Mariana Trench. Extremophiles 1:117–123PubMedCrossRefGoogle Scholar
  59. Kato C, Li L, Nogi Y, Nakamura Y, Tamaoka J, Horikoshi K (1998) Extremely barophilic baceria isolated from the Mariana Trench, Challenger Deep, at a depth of 11, 000 meters. Appl Environ Microbiol 64:1510–1513PubMedGoogle Scholar
  60. Kendall MM, Liu Y, Sieprawska-Lupa M, Stetter KO, Whitman WB, Boone DR (2006) Methanococcus aeolicus sp. nov., a mesophilic, methanogenic archaeon from shallow and deep marine sediments. Int J Syst Evol Microbiol 56:1525–1529PubMedCrossRefGoogle Scholar
  61. Kieft TL, Fredrickson JK, Onstott TC, Gorby YA, Kostandarithes HM, Bailey TJ, Kennedy DW, Li SW, Plymale AE, Spadoni CM, Gray MS (1999) Dissimilatory reduction of Fe(III) and other electron acceptors by a Thermus isolate. Appl Environ Microbiol 65:1214–1221PubMedGoogle Scholar
  62. Klouche N, Basso O, Lascourreges J, Cayol J, Thomas P, Fauque G, Fardeau M, Magot M (2009) Desulfocurvus vexinensis gen. nov., sp. nov., a sulfate-reducing bacterium isolated from a deep subsurface aquifer. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.010363-0PubMedGoogle Scholar
  63. Kobayashi T, Koide O, Mori K, Shimamura S, Matsuura T, Miura T, Takaki Y, Morono Y, Nunoura T, Imachi H, Inagaki F, Takai K, Horikoshi K (2008) Phylogenetic and enzymatic diversity of deep suseafloor aerobic microorganisms in organics- and methane-rich sediments off Shimokita Peninsula. Extremophiles 12:519–527PubMedCrossRefGoogle Scholar
  64. Kodama Y, Watanabe K (2004) Sulfuricurvum kujiense gen. nov., sp nov., a facultatively anaerobic, chemolithoautotrophic, sulfur-oxidizing bacterium isolated from an underground crude-oil storage cavity. Int J Syst Evol Microbiol 54:2297–2300PubMedCrossRefGoogle Scholar
  65. Kotelnikova S, Macario AJL, Pedersen K (1998) Methanobacterium subterraneum sp. nov., a new alkaliphilic, eurythermic and halotolerant methanogen isolated from deep granitic groundwater. Int J Syst Bacteriol 48:357–367PubMedCrossRefGoogle Scholar
  66. Krumholz LR, Harris SH, Tay ST, Suflita JM (1999) Characterization of two subsurface H2-utilizing bacteria, Desulfomicrobium hypogeium sp. nov. and Acetobacterium psammolithicum sp. nov., and their ecological roles. Appl Environ Microbiol 65:2300–2306PubMedGoogle Scholar
  67. Krumholz LR, Harris SH, Sflita JM (2002) Anaerobic microbial growth from components of cretaceous shales. Geomicrobiol J 19:593–602CrossRefGoogle Scholar
  68. Kvenbolden KA (1995) A review of geochemistry of methane in natural gas hydrate. Org Geochem 23:997–1008CrossRefGoogle Scholar
  69. L’Haridon S, Reysenbach AL, Glenat P, Prieur D, Jeanthon C (1995) Hot subterranean biosphere in a continental oil-reservoir. Nature 377:223–224CrossRefGoogle Scholar
  70. L’Haridon S, Miroshnichenko ML, Hippe H, Fardeau ML, Bonch-Osmolovskaya E, Stackebrandt E, Jeanthon C (2001) Thermosipho geolei sp nov., a thermophilic bacterium isolated from a continental petroleum reservoir in Western Siberia. Int J Syst Evol Microbiol 51:1327–1334Google Scholar
  71. L’Haridon S, Miroshnichenko ML, Hippe H, Fardeau ML, Bonch-Osmolovskaya EA, Stackebrandt E, Jeanthon C (2002) Petrotoga olearia sp nov and Petrotoga sibirica sp nov., two thermophilic bacteria isolated from a continental petroleum reservoir in Western Siberia. Int J Syst Evol Microbiol 52:1715–1722PubMedCrossRefGoogle Scholar
  72. Lien T, Beeder J (1997) Desulfobacter vibrioformis sp. nov., a sulfate reducer from a water-oil separation system. Int J Syst Bacteriol 47:1124–1128PubMedCrossRefGoogle Scholar
  73. Lien T, Madsen M, Rainey FA, Birkeland NK (1998) Petrotoga mobilis sp. nov., from a North Sea oil-production well. Int J Syst Bacteriol 48:1007–1013PubMedCrossRefGoogle Scholar
  74. Lin LH, Slater GF, Lollar BS, Couloume GL, Onstott TC (2005) The yield and isotopic composition of radiolytic H2, a potential energy source for the deep subsurface biosphere. Geochim Cosmochim Acta 69:893–903CrossRefGoogle Scholar
  75. Lin LH, Wang P-L, Rumble D, Pipke JL, Boice E, Pratt LM, Loller BS, Brodie EL, Hazen TC, Andersen GL, DeSantis TZ, Moser DP, Kershaw D, Onstott TC (2006) Long-term sustainability of a high-energy, low-diversity crustal biome. Science 314:479–482PubMedCrossRefGoogle Scholar
  76. Lindner AS, Pacheco A, Aldrich HC, Staniec AC, Uz L, Hodson DJ (2007) Methylocystis hirsuta sp nov., a novel methanotroph isolated from a groundwater aquifer. Int J Syst Evol Microbiol 57:1891–1900PubMedCrossRefGoogle Scholar
  77. Lipp JS, Monoro Y, Inagaki F, Hinrich K-U (2008) Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature 454:991–994PubMedCrossRefGoogle Scholar
  78. Liu YT, Karnauchow TM, Jarrell KF, Balkwill DL, Drake GR, Ringelberg D, Clarno R, Boone DR (1997) Description of two new thermophilic Desulfotomaculum spp., Desulfotomaculum putei sp. nov, from a deep terrestrial subsurface, and Desulfotomaculum luciae sp. nov, from a hot spring. Int J Syst Bacteriol 47:615–621CrossRefGoogle Scholar
  79. Love CA, Patel BKC, Nichols PD, Stackebrandt E (1993) Desulfotomaculum australicum sp. nov., a thermophilic sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. Syst Appl Microbiol 16:244–251CrossRefGoogle Scholar
  80. Magot M, Caumette P, Desperrier JM, Metheron R, Dauga C, Grimont F, Carreau L (1992) Desulfovibrio longus sp. nov., a silfate-reducing bacterium isolated from an oil-producing well. Int J Syst Bacteriol 42:398–403PubMedCrossRefGoogle Scholar
  81. Magot M, Ravot G, Campaignolle X, Ollivier B, Patel BKC, Fardeau ML, Thomas P, Crolet JL, Garcia JL (1997a) Dethiosulfovibrio peptidovorans gen. nov, sp. nov, a new anaerobic, slightly halophilic, thiosulfate-reducing bacterium from corroding offshore oil wells. Int J Syst Bacteriol 47:818–824PubMedCrossRefGoogle Scholar
  82. Magot G, Fardeau ML, Arnauld O, Lanau C, Ollivier B, Thomas P, Patel BKC (1997b) Spirochaeta smaragdinae sp. nov., a new mesophilic strictly anaerobic spirochete from an oil field. FEMS Microbiol Lett 155:185–191PubMedCrossRefGoogle Scholar
  83. Magot M, Ollivier B, Patel BKC (2000) Microbiology of petroleum reservoirs. Antonie Leeuwenhoek 77:103–116PubMedCrossRefGoogle Scholar
  84. Magot M, Basso O, Tardy-Jacquenod C, Caumette P (2004) Desulfovibrio bastinii sp. nov. and Desulfovibrio gracilis sp. nov., moderately halophilic, sulfate-reducing bacteria isolated from deep subsurface oilfield water. Int J Syst Evol Microbiol 54:1693–1697PubMedCrossRefGoogle Scholar
  85. Marteinsson VT, Hauksdottir S, Hobel CF, Kristmannsdottir H, Hreggvidsson GO, Kristjansson JK (2001) Phylogenetic diversity analysis of subterranean hot springs in Iceland. Appl Environ Microbiol 67:4242–4248PubMedCrossRefGoogle Scholar
  86. McCollom TM, Bach W (2009) Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochim Cosmochim Acta 73:856–875CrossRefGoogle Scholar
  87. McGenity TJ, Gemmell RT, Grant WD, Stan-Lotter H (2000) Origins of halophilic microorganisms in ancient salt deposits. Environ Microbiol 2:243–250PubMedCrossRefGoogle Scholar
  88. Mikucki JA, Liu Y, Delwiche M, Colwell FS, Boone DR (2003) Isolation of a methanogen from deep marine sediments that contain methane hydrates, and description of Methanoculleus submarines sp. nov. Appl Environ Microbiol 69:3311–3316PubMedCrossRefGoogle Scholar
  89. Milkov AV (2004) Global estimates of hydrate-bound gas in marine sediments: how much is really out there? Earth Sci Rev 66:183–197CrossRefGoogle Scholar
  90. Miroshnichenko ML, Hippe H, Stackebrandt E, Kostrikina NA, Chernyh NA, Jeanthon C, Nazina TN, Belyaev SS, Bonch-Osmolovskaya EA (2001) Isolation and characterization of Thermococcus sibiricus sp nov from a Western Siberia high-temperature oil reservoir. Extremophiles 5:85–91PubMedCrossRefGoogle Scholar
  91. Mochimaru H, Tamaki H, Hanada S, Imachi H, Nakamura K, Sakata S, Kamagata Y (2009) Methanolobus profundi sp nov., a methylotrophic methanogen isolated from deep subsurface sediments in a natural gas field. Int J Syst Evol Microbiol 59:714–718PubMedCrossRefGoogle Scholar
  92. Mormile MR, Biesen MA, Gutierrez MC, Ventosa A, Pavlovich JB, Onstott TC Fredrickson JK (2003) Isolation of Halobacterium salinarum retrieved directly from halite brine inclusions. Environ Microbiol 5:1094–1102PubMedCrossRefGoogle Scholar
  93. Motamedi M, Pedersen K (1998) Desulfovibrio aepoeensis sp. nov., a mesophilic sulfate-reducing bacterium from deep groundwater at Äspö hard rock laboratory, Sweden. Int J Syst Bacteriol 48:311–315PubMedCrossRefGoogle Scholar
  94. Mottl MJ, Komor SC, Fryer P, Moyer CL (2003) Deep-slab fluids fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano: Ocean Drilling Program Leg 195. Geochem Geophys Geosyst 4: (doi:10.1029/2003GC000588)Google Scholar
  95. Nakagawa S, Takai K (2006) Methods for the isolation of thermophiles from deep-sea hydrothermal environments. In: Rainey FA, Oren A (eds) Methods in microbiology, vol 35. Elsevier Acedmic Press, Amsterdam, pp 55–91Google Scholar
  96. Nakagawa S, Takai K (2008) Deep-sea vent chemoautotrophs: diversity, biochemistry, and ecological significance. FEMS Microbiol Ecol 65:1–14PubMedCrossRefGoogle Scholar
  97. Nakagawa T, Takai K, Suzuki Y, Hirayama H, Konno U, Tsunogai U, Horikoshi K (2006) Geomicrobiological exploration and characterization of a novel deep-sea hydrothermal system at the TOTO caldera in the mariana Volcanic Arc. Environ Microbiol 8:37–49PubMedCrossRefGoogle Scholar
  98. Nazina TN, Ivanova AE, Kanchaveli LP, Rozanova EF (1989) A new spore-forming thermophilic methylotrophic sulfate-reducing bacterium, Desulfotomaculum kuznetsovii sp. nov. (English translation of Mikrobiologiya)57: 659–663Google Scholar
  99. Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Ivanova AE, Grigoryan AA, Lysenko AM, Belyaev SS (2000) Physiological and phylogenetic diversity of thermophilic spore-forming hydrocarbon-oxidizing bacteria from oil fields. Microbiology 69:96–102 (English translation of Mikrobiologiya)CrossRefGoogle Scholar
  100. Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, Lysenko AM, Petrunyaka VV, Osipov GA, Belyaev SS, Ivanov MV (2001) Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int J Syst Evol Microbiol 51:433–446PubMedGoogle Scholar
  101. Nazina TN, Sokolova DS, Shestakova NM, Grigoryan AA, Mikhailova EM, Babich TL, Lysenko AM, Tourova TM, Poltaraus AB, Feng QX, Ni FT, Belyaev SS (2005) The phylogenetic diversity of aerobic organotrophic bacteria from the Dagang high-temperature oil field. (English translation of Mikrobiologiya) 74: 343–351Google Scholar
  102. Nedelkova M, Merroun ML, Rossberg A, Hennig C, Selenska-Pobell S (2007) Microbacterium isolates from the vicinity of a radioactive waste depository and their interactions with uranium. FEMS Microbiol Ecol 59:694–705PubMedCrossRefGoogle Scholar
  103. Nevin KP, Holmes DE, Woodard TL, Hinlein ES, Ostendorf DW, Lovley DR (2005) Geobacter bemidjiensis sp nov and Geobacter psychrophilus sp nov., two novel Fe(III)-reducing subsurface isolates. Int J Syst Evol Microbiol 55:1667–1674PubMedCrossRefGoogle Scholar
  104. Nga DP, Ha DTC, Hien LT, Stan-Lotter H (1996) Desulfovibrio vietnamensis sp. nov., a halophilic sulfate-reducing bacterium from Vietnamese oil fields. Anaerobe 2:385–392CrossRefGoogle Scholar
  105. Ni SS, Boone DR (1991) Isolation and characterization of a dimethyl sulfide-degrading methanogen, Methanolobus siciliae HI350, from an oil-well, characterization of M. siciliae T4/MT, and emendation of M. siciliae. Int J Syst Bacteriol 41:410–416PubMedCrossRefGoogle Scholar
  106. Nilsen RK, Torsvik T (1996) Methanococcus thermolithotrophicus isolated from North Sea oil field reservoir water. Appl Environ Microbiol 62:728–731PubMedGoogle Scholar
  107. Nilsen RK, Trosvik T, Lien T (1996) Desulfotomaculum thermocisternum sp nov, a sulfate reducer isolated from a hot North Sea oil reservoir. Int J Syst Bacteriol 46:397–402CrossRefGoogle Scholar
  108. Nunoura T, Oida H, Masui N, Inagaki F, Takai K, Hirano S, Nealson KH, Horikoshi K (2006) Culture-dependent and independent analyses of subsurface microbial communities in oil-bearing strata of the Sagawa oil reservoir. Isl Arc 15:328–337CrossRefGoogle Scholar
  109. Ollivier B, Fardeau ML, Cayol JL, Magot M, Patel BKC, Prensier G, Garcia JL (1998) Methanocalculus halotolerans gen. nov., sp. nov., isolated from an oil-producing well. Int J Syst Bacteriol 48:821–828PubMedCrossRefGoogle Scholar
  110. Onstott TC, McGown DJ, Bakermans C, Ruskeeniemi T, Ahonen L, Telling J, Soffientino B, Pfiffner SM, Sherwood-Lollar B, Frape S, Stotler R, Johnson EJ, Vishnivetskaya TA, Rothmel R, Pratt LM (2009) Microbial communities in subpermafrost saline fracture water at the Lupin Au mine, Nunavut, Canada. Microb Ecol 58:786–807PubMedCrossRefGoogle Scholar
  111. Oren A (2000) Life at high salt concentrations. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) Subsurface microbiology and biogeochemistry. Springer, New York, http://link.
  112. Orphan VJ, Taylor LT, Hafenbradl D, DeLong EF (2000) Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66:700–711PubMedCrossRefGoogle Scholar
  113. Parkes RJ, Cragg BA, Wellsbury P (2000) Recent studies on bacterial populations and processes in subseafloor sediments: a review. Hydrogeol J 8:11–28CrossRefGoogle Scholar
  114. Ravot G, Magot M, Fardeau M-L, Patel BKC, Prensier G, Egan A, Garcia J-L, Ollivier B (1995) Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil-producing well. Int J Syst Bacteriol 45:308–314PubMedCrossRefGoogle Scholar
  115. Ravot G, Magot M, Patel BKC, Ageron E, Grimont PAD, Thomas P, Garcia JL (1997) Haloanaerobium congolense sp nov, an anaerobic, moderately halophilic, thiosulfate- and sulfur-reducing bacterium from an African oil field. FEMS Microbiol Lett 147:81–88PubMedCrossRefGoogle Scholar
  116. Redburn AC, Patel BKC (1994) Desulfovibrio longreachii sp. nov., a sulfate-reducing bacterium isolated from the Great Artesian Basin of Austlaria. FEMS Microbiol Lett 115:33–38PubMedCrossRefGoogle Scholar
  117. Rees GN, Grassia GS, Sheehy AJ, Dwivedi PP, Patel BKC (1995) Desulfacinum infernum gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from a petroleum reservoir. Int J Syst Bacteriol 45:85–89CrossRefGoogle Scholar
  118. Rees GN, Patel BKC, Grassia GS, Sheehy AJ (1997) Anaerobaculum thermoterrenum gen. nov., sp. nov., a novel, thermophilic bacterium which ferments citrate. Int J Syst Bacteriol 47:150–154PubMedCrossRefGoogle Scholar
  119. Rengpipat S, Langworthy TA, Zeikus JG (1988) Halobacteroides acetoethylicus sp. nov., a new obligately anaerobic halophile isolated from deep surface hypersaline environment. Syst Appl Microbiol 11:28–35CrossRefGoogle Scholar
  120. Roh Y, Liu SV, Li G, Huang H, Phelps TJ, Zhou J (2002) Isolation and characterization of metal-reducing Thermoanaerobacter strains from deep subsurface environments of the Piceance Basin, Colorado. Appl Environ Microbiol 68:6013–6020PubMedCrossRefGoogle Scholar
  121. Rozanova EP, Nazina TN, Galushko AS (1988) A new genus of sulfate-reducing bacteria and the description of its new species, Desulfomicrobium apsheronum, new genus new species. Microbiology 57:514–520 (English translation of Mikrobiologiya)Google Scholar
  122. Sass H, Cypionka H (2004) Isolation of sulfate-reducing bacteria from the terrestrial deep subsurface and description of Desulfovibrio cavernae sp nov. Syst Appl Microbiol 27:541–548PubMedCrossRefGoogle Scholar
  123. Schleper C, Pühler G, Kühlmorgen B, Zillig W (1995) Life at extremely low pH. Nature 375:741–742PubMedCrossRefGoogle Scholar
  124. Slobodkin A, Jeanthon C, L’Haridon S, Nazina T, Miroshnichenko M, Bonch-Osmolovskaya E (1999) Dissimilatory reduction of Fe(III) by thermophilic bacteria and archaea in deep subsurface petroleum reservoirs of Western Siberia. Curr Microbiol 39:99–102PubMedCrossRefGoogle Scholar
  125. Spanevello MD, Yamamoto H, Patel BKC (2002) Thermaerobacter subterraneus sp nov., a novel aerobic bacterium from the Great Artesian Basin of Australia, and emendation of the genus Thermaerobacter. Int J Syst Evol Microbiol 52:795–800PubMedCrossRefGoogle Scholar
  126. Stan-Lotter H, McGenity TJ, Legat A, Denner EBM, Glaser K, Stetter KO, Wanner G (1999) Very similar strains of Halococcus salifodinae are found in geographically separated Permo-Triassic salt deposits. Microbiology 145:3565–3574PubMedGoogle Scholar
  127. Stetter KO (2006) Hyperthermophiles in the history of life. Philos Trans R Soc Lond B 361:1837–1842CrossRefGoogle Scholar
  128. Stetter KO, Huber R, Blöchl E, Kurr M, Eden RD, Fielder M, Cash H, Vance I (1993) Hyperthermophilic archaea are thriving in deep North-Sea Alaskan oil-reservoir. Nature 365:743–745CrossRefGoogle Scholar
  129. Takahata Y, Nishijima M, Hoaki T, Maruyama T (2000) Distribution and physiological characteristics of hyperthermophiles in the Kubiki oil reservoir in Niigata, Japan. Appl Environ Microbiol 66:73–79PubMedCrossRefGoogle Scholar
  130. Takahata Y, Nishijima M, Hoaki T, Maruyama T (2001) Thermotoga petrophila sp. nov. and Thermotoga naphthophila sp. nov., two hyperthermophilic bacteria from the Kubiki oil reservoir in Niigata, Japan. Int J Syst Evol Microbiol 51:1901–1909PubMedCrossRefGoogle Scholar
  131. Takai K, Horikoshi K (1999) Molecular phylogenetic analysis of archaeal intron-containing genes coding for rRNA obtained from a deep-subsurface geothermal water pool. Appl Environ Microbiol 65:5586–5589PubMedGoogle Scholar
  132. Takai K, Inoue A, Horikoshi K (1999) Thermaerobacter marianensis gen. nov., sp. nov., an aerobic extremely thermophilic marine bacterium from the 11, 000 m deep Mariana Trench. Int J Syst Bacteriol 49:619–628PubMedCrossRefGoogle Scholar
  133. Takai K, Komatsu T, Inagaki F, Horikoshi K (2001a) Distribution and colonization of archaea in a black smoker chimney structure. Appl Environ Microbiol 67:3618–3629PubMedCrossRefGoogle Scholar
  134. Takai K, Moser DP, Onstott TC, Fredrickson JK (2001b) Archaeal diversity in deep subsurface South African gold mine environments and phylogenetic organization of archaeal domain. Appl Environ Microbiol 67:5750–5760PubMedCrossRefGoogle Scholar
  135. Takai K, Moser DP, Onstott TC, Spoelstra N, Pfiffner SM, Dohnalkova A, Fredrickson JK (2001c) Alkaliphilus transvaalensis gen. nov., sp. nov., an extremely alkaliphilic bacterium isolated from a deep South African gold mine. Int J Syst Evol Microbiol 51:1245–1256PubMedGoogle Scholar
  136. Takai K, Komatsu T, Horikoshi K (2001d) Hydrogenobacter subterraneus sp. nov., an extremely thermophilic, chemoorganotrophic bacterium isolated from a deep subsurface geothermal water pool. Int J Syst Evol Microbiol 51:1425–1435PubMedGoogle Scholar
  137. Takai K, Hirayama H, Sakihama Y, Inagaki F, Yamato Y, Horikoshi K (2002) Isolation and metabolic characteristics of previously uncultured members of the order Aquificales in a subsurface gold mine. Appl Environ Microbiol 68:3046–3054PubMedCrossRefGoogle Scholar
  138. Takai K, Kobayashi H, Nealson KH, Horikoshi K (2003) Sulfurihydrogenobium subterraneum gen. nov., sp. nov., from a subsurface hot aquifer. Int J Syst Evol Microbiol 53:823–827PubMedCrossRefGoogle Scholar
  139. Takai K, Gamo T, Tsunogai U, Nakayama N, Hirayama H, Nealson KH, Horikoshi K (2004) Geochemical and microbiological evidence for a hydrogen-based, hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) beneath an active deep-sea hydrothermal field. Extremophiles 8:269–282PubMedCrossRefGoogle Scholar
  140. Takai K, Moyer CL, Miyazaki M, Nogi Y, Hirayama H, Nealson KH Horikoshi K (2005) Marinobacter alkaliphilus sp. nov., a novel alkaliphilic bacterium isolated from subseafloor alkaline serpentine mud from Ocean Drilling Program (ODP) Site 1200 at South Chamorro Seamount, Mariana Forearc. Extremophiles 9:17–27PubMedCrossRefGoogle Scholar
  141. Takai K, Nakamura K, Suzuki K, Inagaki F, Nealson KH, Kumagai H (2006a) Ultramafics-Hydrothermalism-Hydrogenesis-HyperSLiME (UltraH3) linkage: a key insight into early microbial ecosystem in the Archean deep-sea hydrothermal systems. Paleontol Res 10:269–282CrossRefGoogle Scholar
  142. Takai K, Nakagawa S, Reysenbach AL, Hoek J (2006b) Microbial ecology of Mid-Ocean Ridges and Back-Arc Basins. In: Christie DM, Fisher CR, Lee SM, Givens S (eds) Back-Arc spreading systems: geological, biological, chemical and physical interactions, vol 166. AGU, Washington, pp 185–213, Geophys Monogr SerCrossRefGoogle Scholar
  143. Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008) Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high pressures cultivation. Proc Natl Acad Sci USA 105:10949–10954PubMedCrossRefGoogle Scholar
  144. Takami H, Inoue A, Fuji F, Horikoshi K (1997) Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiol Lett 152:279–285PubMedCrossRefGoogle Scholar
  145. Tardy-Jacquenod C, Magot M, Patel BKC, Matheron R, Caumette P (1998) Desulfotomaculum halophilum sp. nov., a halophilic sulfate-reducing bacterium isolated from oil production facilities. Int J Syst Bacteriol 48:333–338PubMedCrossRefGoogle Scholar
  146. Toffin L, Bidault A, Pignet P, Tindall BJ, Slobodkin A, Kato C, Prieur D (2004a) Shewanella profunda sp nov., isolated from deep marine sediment of the Nankai Trough. Int J Syst Evol Microbiol 54:1943–1949PubMedCrossRefGoogle Scholar
  147. Toffin L, Webster G, Weightman AJ, Fry JC, Prieur D (2004b) Molecular monitoring of culturable bacteria from deep-sea sediment of the Nankai Trough, Leg 190 Ocean Drilling Program. FEMS Microbiol Ecol 48:357–367PubMedCrossRefGoogle Scholar
  148. Vreeland RH, Piselli AF, McDonnough S, Meyer SS (1998) Distribution and diversity of halophilic bacteria In a subsurface salt formation. Extremophiles 2:321–331PubMedCrossRefGoogle Scholar
  149. Vreeland RH, Rosenzweig WD, Power DW (2000) Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407:897–900PubMedCrossRefGoogle Scholar
  150. Vreeland RH, Straight S, Krammes J, Dougherty K, Rosenweig WD, Kamekura M (2002) Halosimplex carlsbadense gen. nov., sp nov., a unique halophilic archaeon, with three 16S rRNA genes, that grows only in defined medium with glycerol and acetate or pyruvate. Extremophiles 6:445–452PubMedCrossRefGoogle Scholar
  151. Vreeland RH, Jones J, Monson A, Rosenzweig WD, Lowenstein TK, Timofeeth M, Satter field C, Cho BC, Park JS, Wallace A, Grant WD (2007) Isolation of live Cretaceous (121–112 million years old) halophilic Archaea from primary salt crystals. Geomicrobiol J 24:275–282CrossRefGoogle Scholar
  152. Yayanos AA (1986) Evolutional and ecological implications of the properties of deep-sea barophilic bacteria. Proc Natl Acad Sci USA 83:9542–9546PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.Subsurface Geobiology Advanced Research (SUGAR) Project, Subground Animalcule Retrieval (SUGAR) ProgramJapan Agency for Marine-Earth Science and Technology (JAMSTEC)YokosukaJapan

Personalised recommendations