Anaerobic Alkaliphiles and Alkaliphilic Poly-Extremophiles

  • Juergen WiegelEmail author
Reference work entry


Over the last 10 years, many elegant and exhaustive reviews have been written about alkaliphiles and alkalithermophiles, their environments, diversity, and physiological problems (e.g., Jones et al. 1998; Grant 1992; Zarvarzin et al. 1999; Wiegel 2002; Pikuta et al 2003; Kevbrin et al. 2004; Wiegel and Kevbrin 2004; Sorokin and Kuenen 2005a, b; Krulwich et al. 2007, 2009; Mesbah and Wiegel 2008). What is new in the field are primarily the many, recently described novel alkalitolerant and alkaliphilic microorganisms. They include psychrophiles and extreme thermophiles (Keller et al. 1995). In addition, there is an increase in the number of publications describing the biodiversity by applying noncultural methods to alkaline environments (e.g., Duckworth et al. 1996; Mono Lake: Humayoun et al. 2003; Pikuta et al. 2003; Wadi an Natrun Lakes, Egypt: Mesbah et al. 2007a; Lake Elmenteita, Kenyan Rift Valley: Mwirichia et al. 2010; Lost City site, Pacific: Brazelton et al. 2010;...


Sewage Sludge Alkaline Environment Soda Lake Alkaline Lake Lost City 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Baas Becking LGM (1934) Geobiologie of inleding tot de milieukunde. WP van Stockum and NV Zoon, The Hague, pp 13 and 15Google Scholar
  2. Boldareva EN (2009) Rubribacterium polymorphum gen. nov., sp. nov., a novel alkaliphilic nonsulfur purple bacterium from an Eastern Siberian soda lake. Microbiology 78:732–740, validated 2010CrossRefGoogle Scholar
  3. Bowers KJ (2010) Life at the limits: diversity, physiology and bioenergetics of haloalkalithermophiles. MS-thesis, University of Georgia, AthensGoogle Scholar
  4. Bowers KJ, Mesbah N, Wiegel J (2009) Biodiversity of poly-extremophilic Bacteria: does combining the extremes of high salt, alkaline pH and elevated temperature approach a physico-chemical boundary for life? Saline Syst 5:9 (open access doi:10.1186/1746-1448-5-9)PubMedCrossRefGoogle Scholar
  5. Brazelton WJ, Schrenk MO, Kelley DS, Baross JA (2006) Methane and sulfur metabolizing microbial communities dominate in the Lost City hydrothermal vent ecosystem. Appl Environ Microbiol 72:6257–6270PubMedCrossRefGoogle Scholar
  6. Brazelton WJ, Ludwig KA, Sogin ML, Andreishcheva EN, Kelley DS, Shen C-C, Edwards RL, Baross JA (2010) Archaea and bacteria with surprising microdiversity show shifts in dominance over 1,000-year time scales in hydrothermal chimneys. Proc Natl Acad Sci USA 107:1612–1617PubMedCrossRefGoogle Scholar
  7. Cook GM, Russel JB, Reichert A, Wiegel J (1996) The intracellular pH of Clostridium paradoxum, an anaerobic alkaliphilic, and thermophilic bacterium. Appl Environ Microbiol 62:4576–4579PubMedGoogle Scholar
  8. Duckworth AW, Grant WD, Jones BE, van Steenbergen R (1996) Phylogenetic diversity of soda Lake Alkaliphiles. FEMS Microbiol Ecol 19:181–191CrossRefGoogle Scholar
  9. Engle M, Li Y, Woese C, Wiegel J (1995) Isolation and characterization of a novel alkalitolerant thermophile, Anaerobranca horikoshii gen. nov. sp. nov. Int J Syst Bacteriol 45:454–461PubMedCrossRefGoogle Scholar
  10. Engle M, Li Y, Rainey F, DeBlois S, Mai V, Reichert A, Mayer F, Messmer P, Wiegel J (1996) Thermobrachium celere, gen. nov., sp. nov., a fast growing thermophilic, alkalitolerant, and proteolytic obligate anaerobe. Int J Syst Bacteriol 46:1025–1033PubMedCrossRefGoogle Scholar
  11. Godfroy A, Meunieer JR, Guezenec J, Lesongeur F, Raguenes G, Rimbault A, Barbier G (1996) Thermococcus fumicolans sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent in the North Fiji Basin. Int J Syst Bacteriol 46:1113–1119PubMedCrossRefGoogle Scholar
  12. Grant WD (1992) Alkaline environments. In: Lederberg J (ed) Encyclopaedia of microbiology, vol 1. Academic, London, pp 73–80Google Scholar
  13. Grant WD (2006) Cultivation of aerobic alkaliphiles. In: Oren A, Rainey FA (eds) Methods in microbiology. Academic/Elsevier, New York, pp 439–393Google Scholar
  14. Grant S, Grant D, Brian EJ, Kato C, Li L (1999) Novel archaeal phylotypes from an East African alkaline saltern. Extremophiles 3:139–145PubMedCrossRefGoogle Scholar
  15. Hardie LA, Eugster HP (1970) The evolution of closed basin brines. Miner Soc Am Spec Pub 3:273–290Google Scholar
  16. Horikoshi K (1991) Microorganisms in alkaline environments. Kodansha-VCH, TokyoGoogle Scholar
  17. Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63:735–750PubMedGoogle Scholar
  18. Horiskoshi K, Akiba T (1982) Alkalophilic microorganisms. A new microbial world. Japan Scientific Societies Press/Springer, New YorkGoogle Scholar
  19. Humayoun SB, Bano N, Hollibaugh JT (2003) Depth disribution of microbial diversity in Mono Lake, a meromictic soda lake in California. Appl Environ Microbiol 69:1030–1042PubMedCrossRefGoogle Scholar
  20. Imhoff JF, Sahl HG, Soliman GSH, Trüper HG (1979) The Wadi Natrun: chemical compoition and microbial mass developments in alkaline brines of eutrophic desert lakes. Geomicrobiol J 1:219–234CrossRefGoogle Scholar
  21. Jones BE, Grant W, Collins NC, Mwatha WE (1994) Alkaliphiles: diversity and identification. In: Priest G, Ramos-Cormenzana A, tindall BJ (eds) Bacterial diversity and systematic. Plenum Press, New York, pp 195–230CrossRefGoogle Scholar
  22. Jones BE, Grant WD, Duckworth AW, Owenson GG (1998) Microbial diversity of soda lakes. Extremophiles 2:191–200PubMedCrossRefGoogle Scholar
  23. Keller M, Braun FJ, Dirmeyer R, Hafenbradl D, Burggraf S, Stetter KO (1995) Thermococcus alcaliphilus sp. nov., a new hyperthermophilic archaeum growing on polysulfide at alkaline pH. Arch Microbiol 164:390–395PubMedCrossRefGoogle Scholar
  24. Kelley DS, Karson JA, Früh-Green GL, Yoerger DR, Shank TM, Butterfield DA, Hayes JM, Schrenk MO, Olson EJ, Proskurowski G, Jakuba M, Bradley A, Larson B, Ludwig K, Glickson D, Buckman K, Bradley AS, Brazelton WJ, Roe K, Elend MJ, Delacour A, Bernasconi SM, Lilley MD, Baross JA, Summons RE, Sylva SP (2005) A serpentinite-hosted ecosystem: the lost city hydrothermal field. Science 307:1428–1434PubMedCrossRefGoogle Scholar
  25. Kevbrin VV, Lysenk AM, Zhilina TN (1997) Physiology of the alkaliphilic methanogen Z-7936, a new strain of Methanosalsus zhilinaeae isolated from lake Magadi. Microbiology 66:261–266 (Engl. Translation)Google Scholar
  26. Kevbrin VV, Romanek CS, Wiegel J (2004) Alkalithermophiles: a double challenge from extreme environments. Section VI: extremophiles and biodiversity, origins: genesis, evolution and the biodiversity of life. In: Seckbach J (ed) Cellular origins, life in extreme habitats and astrobiology (COLE), vol 6. Kluwer, Dordrecht, pp 395–412Google Scholar
  27. Knauss KG, Wolery TJ, Jackson KJ (1990) A new approach to measuring pH in brines and other concentrated electrolytes. Geochim Cosmochim Acta 54:1519–1523CrossRefGoogle Scholar
  28. Knauss KG, Wolery TJ, Jackson KJ (1991) Reply to comment by R.E. Mesmer on “A new approach to measuring pH in brines and other concentrated electrolytes”. Geochim Cosmochim Acta 55:1177–1179CrossRefGoogle Scholar
  29. Kompantseva EI (2010) Rhodovulum steppense sp. nov., an obligately haloalkaliphilic purple nonsulfur bacterium widespread in saline soda lakes of Central Asia. Int J Syst Evol Microbiol 60:1210–1214PubMedCrossRefGoogle Scholar
  30. Krulwich TA (1995) Alkaliphiles: “basic” molecular problems of pH tolerance and bioenergetics. Mol Microbiol 15:403–410PubMedCrossRefGoogle Scholar
  31. Krulwich TA (2000) Alkaliphilic prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes: an evolving electronic database for the microbiological community, 3rd edn. Springer, Berlin, version 3.1 (
  32. Krulwich TA, Hicks DB, Swartz T, Ito M (2007) In: Gerday C, Glansdorf N (eds) Physiolgy and biochemistry of extremophiles. ASM Press, Washington, pp 311–329Google Scholar
  33. Krulwich TA, Hicks DB, Ito M (2009) Cation/proton antiporter complements of bacteria: why so large and diverse? Mol Microbiol 74:257–260PubMedCrossRefGoogle Scholar
  34. Li Y, Mandelco L, Wiegel J (1993) Isolation and characterization of a moderately thermophilic anaerobic alkaliphile, Clostridium paradoxum, sp. nov. Int J Syst Bacteriol 43:450–460CrossRefGoogle Scholar
  35. Li Y, Engle M, Mandelco L, Wiegel J (1994) Clostridium thermoalcaliphilum sp. nov., an anaerobic and thermotolerant facultative alkaliphile. Int J Syst Bacteriol 44:111–118PubMedCrossRefGoogle Scholar
  36. Matin RF, Davids W, Abu Alsoud W, Levander F, Radstrom P, Hatti-Kaul R (2001) Starch-hydroyzing bacteria from Ethipian soda lakes. Extremophiles 5:135–144CrossRefGoogle Scholar
  37. Mesbah N, Wiegel J (2006) Isolation, cultivation and characterization of alkalithermophiles. In: Oren A, Rainey FA (eds) Methods in microbiology. Academic/Elsevier, New York, pp. 451–468Google Scholar
  38. Mesbah N, Wiegel J (2008) Haloalkalithermophiles. Ann NY Acad Sci 1125:44–57PubMedCrossRefGoogle Scholar
  39. Mesbah N, Wiegel J (2009) Natronovirga wadinatrunensis gen. nov. sp. nov. and Natranaerobius trueperi sp. nov., two halophilic, alkalithermophilic microorganisms from soda lakes of the Wadi An Natrun, Egypt. Int J Syst Evol Microbiol 59:2043–2049CrossRefGoogle Scholar
  40. Mesbah NM, Abou-El-Ela SH, Wiegel J (2007a) Novel and unexpected prokaryotic diversity in water and sediments of the alkaline, hypersaline lakes of the Wadi An Natrun, Egypt. Microb Ecol 54:598–617PubMedCrossRefGoogle Scholar
  41. Mesbah N, David M, Hedrick B, Peacock AD, Rohde M, Wiegel J (2007b) Natranaerobius thermophilus gen. nov. sp. nov., a halophilic, alkalithermophilic bacterium from soda lakes of the Wadi An Natrun, Egypt. and proposal of Natranaerobiaceae fam. nov. and Natranaerobiales ord. nov. Int J Syst Evol Microbiol 57:2507–2512PubMedCrossRefGoogle Scholar
  42. Mesbah N, Cook G, Wiegel J (2009) The halophilic alkalithermophile Natranaerobius thermophilus adapts to multiple environmental extremes using a large repertoire of Na+ (K+)/H+ antiporters. Mol Microbiol 74:270–281PubMedCrossRefGoogle Scholar
  43. Mesmer RE (1991) Comments on “A new approach to measuring pH in brines and other concentrated electrolytes” by K.G. Kraus, T.J. Wolery, and Jackson, K.J. Geochim Cosochim Acta 55:1175–1176CrossRefGoogle Scholar
  44. Milford AD, Achenbach LA, Jung DO, Madigan M (2000) Rhodobaca bogeroensis gen.nov. and sp.nov., an alkaliphilic purle non sulfur bacterium from African Rift Valley soda lakes. Arch Microbiol 174:18–27PubMedCrossRefGoogle Scholar
  45. Mwaura F (1999) A spatio-chemical survey of hydrogeothermal springs in Lake Elmenteita, Kenya. Int J Salt Lake Res 8:127–138Google Scholar
  46. Mwirichia R, Cousin S, Muigai AW, Boga HI, Stackebrandt E (2010) Bacterial diversity in the haloalkaline Lake Elmenteita, Kenya. Curr Microbiol. doi:10.1007/s00284-010-9692-4Google Scholar
  47. Pikuta EV, Detkova EN, Bej AK, Marsic D, Hoover RB (2003) Anaerobic halo- alkaliphilic bacterial community of athalassic, hypersaline Mono Lake and Owens Lake in California. In: Hoover RB, Rozanov AY, Paepe RR (eds) Instruments, methods, and missions for astrobiology V, Proceedings, vol 4859. pp 130–144Google Scholar
  48. Seo SH, Lee SD (2009) Actinocatenispora rupis sp. nov., isolated from cliff soil, and emended description of thegenus Acitoncatenispora. Int J Syst Environ Microbiol 59:3078–3082CrossRefGoogle Scholar
  49. Sorokin DY (2005) Is there a limit for high-pH growth? Int J Syst Evol Microbiol 55(4):1405–1406PubMedCrossRefGoogle Scholar
  50. Sorokin DY, Kuenen JG (2005a) Alkaliphilic chemolithotrophs from soda lakes. FEMS Microbiol Ecol 52:287–295PubMedCrossRefGoogle Scholar
  51. Sorokin DY, Kuenen JG (2005b) Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes. FEMS Microbiol Rev 29(4):685–687PubMedCrossRefGoogle Scholar
  52. Sorokin DY, Muyzer G (2010a) Bacterial dissimilatory MnO2 reduction at extremely haloalkaline conditions. Extremophiles 14:41–46PubMedCrossRefGoogle Scholar
  53. Sorokin DY, Muyzer G (2010b) Haloalkaliphilic spore-forming sulfidogens from soda lake sediments and description of Desulfitispora alkaliphila gen. nov., sp. nov. Extremophiles 14:313–320PubMedCrossRefGoogle Scholar
  54. Sorokin DY, Muyzer G (2010c) Desulfurispira natronophila gen. nov. sp. nov.: an obligately anaerobic dissimilatory sulfur-reducing bacterium from soda lakes. Extremophiles 14:349–355PubMedCrossRefGoogle Scholar
  55. Sorokin DY, Foti M, Pinkart HC, Muyzer G (2007) Sulfur-oxidizing bacteria in Soap Lake (Washington, USA), a meromictic, haloalkaline lake with an unprecedented high sulfide content. Appl Environ Microbiol 73:451–455PubMedCrossRefGoogle Scholar
  56. Sorokin DY, Detkova EN, Muyzer G (2010a) Propionate and butyrate dependent bacterial sulfate reduction at extremely haloalkaline conditions and description of Desulfobotulus alkaliphilus sp. nov. Extremophiles 14:71–77PubMedCrossRefGoogle Scholar
  57. Sorokin DY, Rusanov II, Pimenov NV, Tourova TP, Abbas B, Muyzer G (2010b) Sulfidogenesis at extremely haloalkaline conditions in soda lakes of Kulunda Steppe (Altai, Russia). FEMS Microbiol Ecol 73:278–290PubMedGoogle Scholar
  58. Vedder A (1934) Bacillus alcalophilus n. sp.; benevens enkele ervaringen met sterk alcalische voedingsbodems. Anton van Lee J M S 1:141–147. doi:DOI:dx.doi.orgCrossRefGoogle Scholar
  59. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: theunsen majority. Proc Natl Acad Sci USA 95:6578–6583PubMedCrossRefGoogle Scholar
  60. Wiegel J (1998) Anaerobic alkali-thermophiles, a novel group of extremophiles. Extremophiles 2:257–267PubMedCrossRefGoogle Scholar
  61. Wiegel J (2002) Thermophiles: anaerobic alkalithermophiles. Chapter ENV 315. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New York, pp 3127–3140Google Scholar
  62. Wiegel J, Kevbrin V (2004) Diversity of aerobic and anaerobic alkalithermophiles. Biochem Soc Trans 32:193–198PubMedCrossRefGoogle Scholar
  63. Wiegel J, Braun M, Gottschalk G (1981) Clostridium thermoautotrophicum specius novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide. Curr Microbiol 5:255–260CrossRefGoogle Scholar
  64. Zarvarzin GA, Zhilina TN, Kevbrin VV (1999) The alkaliphilic microbial community and its functional diversity. Microbiology 68:503–521 (English translation)Google Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.Department of MicrobiologyUniversity of GeorgiaAthensUSA

Personalised recommendations