Sub-seafloor Sediments: An Extreme but Globally Significant Prokaryotic Habitat (Taxonomy, Diversity, Ecology)

  • Henrik Sass
  • R. John Parkes

The Marine Biosphere in Deep Sediments

Oceans cover about 70% of the Earth’s surface and beneath these there are normally sediments accumulated from the 5–10 billion tons of particulate matter that are constantly sinking within them. Hence, these sediments are very extensive and can be up to 10 km thick, although average depths are about 500 m. They are a major global reservoir for compounds such as organic carbon, nitrogen, iron, and sulfur which impacts element cycles, climate, and the redox state of the Earth on geological timescales. The average ocean depth above these sediments is about 3,800 m, which exerts a pressure of 38 MPa. Hence, ocean sediments are characteristically high-pressure environments. Surface sediments are cold, around 2°C, although temperatures do gradually increase with depth (∼30°C/km). But so does pressure, which squeezes the sediment, increasing compaction and reducing porosity. These high-pressure conditions and initially low temperatures, together with...


Deep Sediment Subsurface Sediment Deep Biosphere Miscellaneous Crenarchaeotic Group Subseafloor Sediment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anderson RT, Chapelle FH, Lovley DR (1998) Evidence against hydrogen-based microbial ecosystems in basalt aquifers. Science 281:976–977PubMedCrossRefGoogle Scholar
  2. Bach W, Edwards KJ (2003) Iron and sulfide oxidation within the basaltic ocean crust: implications for chemolithoautotrophic microbial biomass production. Geochim Cosmochim Acta 67:3871–3887CrossRefGoogle Scholar
  3. Bale SJ, Goodman K, Rochelle PA, Marchesi JR, Fry JC, Weightman AJ, Parkes RJ (1997) Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int J Syst Bacteriol 47:515–521PubMedCrossRefGoogle Scholar
  4. Barnes SP, Bradbrook SD, Cragg BA, Marchesi JR, Weightman AJ, Fry JC, Parkes RJ (1998) Isolation of sulfate-reducing bacteria from deep sediment layers of the Pacific Ocean. Geomicrobiol J 15:67–83CrossRefGoogle Scholar
  5. Batzke A, Engelen B, Sass H, Cypionka H (2007) Phylogenetic and physiological diversity of cultured deep-biosphere bacteria from the Equatorial Pacific Ocean and Peru Margin sediments. Geomicrobiol J 24:261–273CrossRefGoogle Scholar
  6. Biddle JF, House CH, Brenchley JE (2005) Microbial stratification in deeply buried marine sediment reflects changes in sulfate/methane profiles. Geobiology 3:287–295CrossRefGoogle Scholar
  7. Biddle JF, Lipp JS, Lever MA, Lloyd KG, Sørensen KB, Anderson R, Fredricks HF, Elvert M, Kelly TJ, Schrag DP, Sogin ML, Brenchley JE, Teske A, House CH, Hinrichs KU (2006) Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proc Natl Acad Sci USA 103:3846–3851PubMedCrossRefGoogle Scholar
  8. Biddle JF, Fitz-Gibbon S, Schuster SC, Brenchley JE, House CH (2008) Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proc Natl Acad Sci USA 105:10583–10588PubMedCrossRefGoogle Scholar
  9. Coolen MJL, Overmann J (2007) 217 000-year-old DNA sequences of green sulfur bacteria in Mediterranean sapropels and their implications for the reconstruction of the paleoenvironment. Environ Microbiol 9:238–249PubMedCrossRefGoogle Scholar
  10. Coolen MJL, Cypionka H, Sass AM, Sass H, Overmann J (2002) Ongoing modification of Mediterranean Pleistocene sapropels mediated by prokaryotes. Science 296:2407–2410PubMedCrossRefGoogle Scholar
  11. Cowen JP, Giovannoni SJ, Kenig F, Johnson HP, Butterfield D, Rappé MS, Hutnak M, Lam P (2003) Fluids from ageing ocean crust that support microbial life. Science 299:120–123PubMedCrossRefGoogle Scholar
  12. Cragg BA, Wellsbury P, Murray RW, Parkes RJ (2003) Bacterial populations in deepwater low-sedimentation-rate marine sediments and evidence for subsurface bacterial manganese reduction (ODP Site 1149, Izu-Bonin Trench). In: Ludden JN, Plank T, Escutia C (eds) Proceedings of the Ocean Drilling Program, scientific results, vol 161. Ocean Drilling Program, College Station, pp 1–11 [online]Google Scholar
  13. D’Hondt S, Rutherford S, Spivack AJ (2002) Metabolic activity of subsurface life in deep-sea sediments. Science 295:2067–2070PubMedCrossRefGoogle Scholar
  14. D’Hondt S, Jørgensen BB, Miller DJ, Batzke A, Blake R, Cragg BA, Cypionka H, Dickens GR, Ferdelman T, Hinrichs KU, Holm NG, Mitterer R, Spivack A, Wang G, Bekins B, Engelen B, Ford K, Gettemy G, Rutherford SD, Sass H, Skilbeck CG, Aiello IW, Guèrin G, House C, Inagaki F, Meister P, Naehr T, Niitsuma S, Parkes RJ, Schippers A, Smith DC, Teske A, Wiegel J, Naranjo Padilla C, Solis Acosta JL (2004) Distributions of microbial activities in deep subseafloor sediments. Science 306:2216–2221PubMedCrossRefGoogle Scholar
  15. D’Hondt S, Spivack AJ, Pockalny R, Ferdelman TG, Fischer JP, Kallmeyer J, Abrams LJ, Smith DC, Graham D, Hasiuk F, Schrum H, Stancin AM (2009) Subseafloor sedimentary life in the South Pacific Gyre. Proc Natl Acad Sci USA 106:11651–11656PubMedGoogle Scholar
  16. Engelen B, Ziegelmüller K, Wolf L, Köpke B, Gittel A, Cypionka H, Treude T, Nakagawa S, Inagaki F, Lever MA, Steinsbu BO (2008) Fluids from the oceanic crust support microbial activities within the deep biosphere. Geomicrobiol J 25:56–66CrossRefGoogle Scholar
  17. Fichtel J, Köster J, Rullkötter J, Sass H (2008) Dipicolinic acid contents reveal high variations in endospore numbers within tidal flat sediments. Geomicrobiol J 25:371–380CrossRefGoogle Scholar
  18. Forschner SR, Sheffer R, Rowley DC, Smith DC (2009) Microbial diversity in Cenozoic sediments recovered from the Lomonosov Ridge in the Central Arctic Basin. Environ Microbiol 11:630–639PubMedCrossRefGoogle Scholar
  19. Fry JC, Parkes RJ, Cragg BA, Weightman AJ, Webster G (2008) Prokaryotic biodiversity and activity in the deep subseafloor biosphere. FEMS Microbiol Ecol 66:181–196PubMedCrossRefGoogle Scholar
  20. Horsfield B, Schenk HJ, Zink K, Ondrak R, Dieckmann V, Kallmeyer J, Mangelsdorf K, di Primio R, Wilkes H, Parkes RJ (2006) Living microbial ecosystems within the active zone of catagenesis: Implications for feeding the deep biosphere. Earth Planet Sci Lett 246:55–69CrossRefGoogle Scholar
  21. Hubert C, Loy A, Nickel M, Arnosti C, Baranyi C, Brüchert V, Ferdelman T, Finster K, Christensen FM, de Rezende JR, Vandieken V, Jørgensen BB (2009) A constant flux of diverse thermophilic bacteria into the cold Arctic seabed. Science 325:1541–1544PubMedCrossRefGoogle Scholar
  22. Inagaki F, Suzuki M, Takai K, Oida H, Sakamoto T, Aoki K, Nealson KH, Horikoshi K (2003) Microbial communities associated with geological horizons in coastal subseafloor sediment from the Sea of Okhotsk. Appl Environ Microbiol 69:7224–7235PubMedCrossRefGoogle Scholar
  23. Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever M, Lauer A, Suzuki M, Takai K, Delwiche M, Colwell FS, Nealson KH, Horikoshi K, D’Hondt S, Jørgensen BB (2006) Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc Natl Acad Sci USA 103:2815–2820PubMedCrossRefGoogle Scholar
  24. Jiang H, Dong H, Ji S, Ye Y, Wu N (2007) Microbial diversity in the deep marine sediments from the Qiongdongnan Basin in South China Sea. Geomicrobiol J 24:505–517CrossRefGoogle Scholar
  25. Jing Z, RunYing Z (2008) Bacterial community in deep subseafloor sediments from the western Pacific “warm pool”. Sci China, Ser D Earth Sci 51:618–624CrossRefGoogle Scholar
  26. Kendall MM, Liu Y, Sieprawska-Lupa M, Stetter KO, Whitman WB, Boone DR (2006) Methanococcus aeolicus sp. nov., a mesophilic, methanogenic archaeon from shallow and deep marine sediments. Int J Syst Evol Microbiol 56:1525–1529PubMedCrossRefGoogle Scholar
  27. Kieft TL, Wilch E, O’Connor K, Ringelberg DB, White DC (1997) Survival and phospholipid fatty acid profiles of surface and subsurface bacteria in natural sediment microcosms. Appl Environ Microbiol 63:1531–1542PubMedGoogle Scholar
  28. Kobayashi T, Koide O, Mori K, Shimamura S, Matsuura T, Miura T, Takaki Y, Morono Y, Nunoura T, Imachi H, Inagaki F, Takai K, Horikoshi K (2008) Phylogenetic and enzymatic diversity of deep subseafloor aerobic microorganisms in organics- and methane-rich sediments off Shimokita Peninsula. Extremophiles 12:519–527PubMedCrossRefGoogle Scholar
  29. Köpke B, Wilms R, Engelen B, Cypionka H, Sass H (2005) Microbial diversity in coastal subsurface sediments – a cultivation approach using various electron acceptors and substrate gradients. Appl Environ Microbiol 71:7819–7830PubMedCrossRefGoogle Scholar
  30. Kormas KA, Smith DC, Edgcomb V, Teske A (2003) Molecular analysis of deep subsurface microbial communities in Nankai Trough sediments (ODP Leg 190, Site 1176). FEMS Microbiol Ecol 45:115–125PubMedCrossRefGoogle Scholar
  31. Krumholz LR, Harris SH, Harris JM (2002) Anaerobic microbial growth from components of Cretaceous shales. Geomicrobiol J 19:593–602CrossRefGoogle Scholar
  32. Lee YJ, Wagner ID, Brice ME, Kevbrin VV, Mills GL, Romanek CS, Wiegel J (2005) Thermosediminibacter oceani gen. nov., sp. nov. and Thermosediminibacter litoriperuensis sp. nov., new anaerobic thermophilic bacteria isolated from Peru Margin. Extremophiles 9:375–383PubMedCrossRefGoogle Scholar
  33. Lin LH, Wang PL, Rumble D, Lippmann-Pipke J, Boice E, Pratt LM, Sherwood Lollar B, Brodie EL, Hazen TC, Andersen GL, DeSantis TZ, Moser DP, Kershaw D, Onstott TC (2006) Long-term sustainability of a high-energy, low-diversity crustal biome. Science 314:479–482PubMedCrossRefGoogle Scholar
  34. Lipp JS, Morono Y, Inagaki F, Hinrichs KU (2008) Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature 454:991–994PubMedCrossRefGoogle Scholar
  35. Luther GW, Sundby B, Lewis BL, Brendel PJ, Silverberg N (1997) Interactions of manganese with the nitrogen cycle: Alternative pathways to dinitrogen. Geochim Cosmochim Acta 61:4043–4052CrossRefGoogle Scholar
  36. Lysnes K, Thorseth IH, Steinsbu BO, Øvreås L, Torsvik T, Pedersen RB (2004) Microbial community diversity in seafloor basalt from the Arctic spreading ridges. FEMS Microbiol Ecol 50:213–230PubMedCrossRefGoogle Scholar
  37. Masui N, Morono Y, Inagaki F (2008) Microbiological assessment of circulation mud fluids during the first operation of riser drilling by the deep-earth research vessel Chikyu. Geomicrobiol J 25:274–282CrossRefGoogle Scholar
  38. Mather ID, Parkes RJ (2000) Bacterial profiles in sediments of the Eastern Flank of the Juan de Fuca Ridge, Sites 1026 and 1027. In: Fisher A, Davies EE, Escutia C (eds) Proceedings of the Ocean Drilling Program, scientific results, vol 168. Ocean Drilling Program, College Station, pp 161–165Google Scholar
  39. Mauclaire L, Zepp K, Meister P, McKenzie J (2004) Direct in situ detection of cells in deep-sea sediment cores from the Peru Margin (ODP Leg 201, Site 1229). Geobiology 2:217–223CrossRefGoogle Scholar
  40. Mikucki JA, Liu Y, Delwiche M, Colwell FS, Boone DR (2003) Isolation of a methanogen from deep marine sediments that contain methane hydrates, and description of Methanoculleus submarinus sp. nov. Appl Environ Microbiol 69:3311–3316PubMedCrossRefGoogle Scholar
  41. Morita RY, ZoBell CE (1955) Occurrence of bacteria in pelagic sediments collected during the Mid-Pacific Expedition. Deep Sea Res 3:66–73CrossRefGoogle Scholar
  42. Newberry CJ, Webster G, Cragg BA, Parkes RJ, Weightman AJ, Fry JC (2004) Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, Ocean Drilling Program Leg 190. Environ Microbiol 6:274–287PubMedCrossRefGoogle Scholar
  43. Nunoura T, Inagaki F, Delwiche ME, Colwell FS, Takai K (2008) Subseafloor microbial communities in methane hydrate-bearing sediment at two distinct locations (ODP Leg 204) in the Cascadia Margin. Microbes Environ 23:317–325PubMedCrossRefGoogle Scholar
  44. Parkes RJ, Cragg BA, Fry JC, Herbert RA, Wimpenny JWT (1990) Bacterial biomass and activity in deep sediment layers from the Peru margin. Philos Trans R Soc Lond A Math Phys Eng Sci 331:139–153CrossRefGoogle Scholar
  45. Parkes RJ, Cragg BA, Bale SJ, Getliff JM, Goodman K, Rochelle PA, Fry JC, Weightman AJ, Harvey SM (1994) Deep bacterial biosphere in Pacific Ocean sediments. Nature 371:410–413CrossRefGoogle Scholar
  46. Parkes RJ, Cragg BA, Wellsbury P (2000) Recent studies on bacterial populations and processes in subseafloor sediments: A review. Hydrogeol J 8:11–28CrossRefGoogle Scholar
  47. Parkes RJ, Webster G, Cragg BA, Weightman AJ, Newberry CJ, Ferdelman TG, Kallmeyer J, Jørgensen BB, Aiello IW, Fry JC (2005) Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature 436:390–394PubMedCrossRefGoogle Scholar
  48. Parkes RJ, Wellsbury P, Mather ID, Cobb SJ, Cragg BA, Hornibrook ERC, Horsfield B (2007) Temperature activation of organic matter and minerals during burial has the potential to sustain the deep biosphere over geological timescales. Org Geochem 38:845–852CrossRefGoogle Scholar
  49. Parkes RJ, Sellek G, Webster G, Martin D, Anders E, Weightman A, Sass H (2009) Culturable prokaryotic diversity of deep, gas hydrate sediments: first use of a continuous high-pressure, anaerobic, enrichment and isolation system for sub-seafloor sediments (DeepIsoBUG). Environ Microbiol 11:3140–3153PubMedCrossRefGoogle Scholar
  50. Reed DW, Fujita Y, Delwiche ME, Blackwelder DB, Sheridan PP, Uchida T, Colwell FS (2002) Microbial communities from methane hydrate-bearing deep marine sediments in a forearc basin. Appl Environ Microbiol 68:3759–3770PubMedCrossRefGoogle Scholar
  51. Roussel EG, Cambon Bonavita MA, Querellou J, Cragg BA, Webster G, Prieur D, Parkes RJ (2008) Extending the sub-sea-floor biosphere. Science 320:1046PubMedCrossRefGoogle Scholar
  52. Roussel EG, Sauvadet AL, Chaduteau C, Fouquet Y, Charlou JL, Prieur D, Cambon Bonavita MA (2009a) Archaeal communities associated with shallow to deep subseafloor sediments of the New Caledonia Basin. Environ Microbiol 11:2446–2462PubMedCrossRefGoogle Scholar
  53. Roussel EG, Sauvadet AL, Allard J, Chaduteau C, Richard P, Cambon Bonavita MA, Chaumillon E (2009b) Archaeal methane cycling communities associated with gassy subsurface sediments of Marennes-Oleron Bay (France). Geomicrobiol J 26:31–43CrossRefGoogle Scholar
  54. Schippers A, Neretin LN (2006) Quantification of microbial communities in near-surface and deeply buried marine sediments on the Peru continental margin using real-time PCR. Environ Microbiol 8:1251–1260PubMedCrossRefGoogle Scholar
  55. Schippers A, Neretin LN, Kallmeyer J, Ferdelman TG, Cragg BA, Parkes RJ, Jørgensen BB (2005) Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature 433:861–864PubMedCrossRefGoogle Scholar
  56. Schrum HN, Spivack AJ, Kastner M, D’Hondt S (2009) Sulfate-reducing ammonium oxidation: A thermodynamically feasible metabolic pathway in subseafloor sediment. Geology 37:939–942CrossRefGoogle Scholar
  57. Smith DC, Spivack AJ, Fisk MR, Haveman SA, Staudigel H (2000) Tracer-based estimates of drilling-induced microbial contamination of deep sea crust. Geomicrobiol J 17:207–219CrossRefGoogle Scholar
  58. Sørensen KB, Teske A (2006) Stratified communities of active Archaea in deep marine subsurface sediments. Appl Environ Microbiol 72:4596–4603PubMedCrossRefGoogle Scholar
  59. Stevens TO, McKinley JP (1995) Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270:450–454CrossRefGoogle Scholar
  60. Süß J, Engelen B, Cypionka H, Sass H (2004) Quantitative analysis of bacterial communities from Mediterranean sapropels based on cultivation-dependent methods. FEMS Microbiol Ecol 51:109–121PubMedCrossRefGoogle Scholar
  61. Süß J, Schubert K, Sass H, Cypionka H, Overmann J, Engelen B (2006) Widespread distribution and high abundance of Rhizobium radiobacter within Mediterranean subsurface sediments. Environ Microbiol 8:1753–1763PubMedCrossRefGoogle Scholar
  62. Süß J, Herrmann K, Seidel M, Cypionka H, Engelen B, Sass H (2008) Two distinct Photobacterium populations thrive in ancient Mediterranean sapropels. Microb Ecol 55:371–383PubMedCrossRefGoogle Scholar
  63. Takai K, Gamo T, Tsunogai U, Nakayama N, Hirayama H, Nealson KH, Horikoshi K (2004) Geochemical and microbiological evidence for a hydrogen-based, hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) beneath an active deep-sea hydrothermal field. Extremophiles 8:269–282PubMedCrossRefGoogle Scholar
  64. Takai K, Moyer CL, Miyazaki M, Nogi Y, Hirayama H, Nealson KH, Horikoshi K (2005) Marinobacter alkaliphilus sp. nov., a novel alkaliphilic bacterium isolated from subseafloor alkaline serpentine mud from Ocean Drilling Program Site 1200 at South Chamorro Seamount, Mariana Forearc. Extremophiles 9:17–27PubMedCrossRefGoogle Scholar
  65. Thomsen TR, Finster K, Ramsing NB (2001) Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment. Appl Environ Microbiol 67:1646–1656PubMedCrossRefGoogle Scholar
  66. Toffin L, Bidault A, Pignet P, Tindall BJ, Slobodkin A, Kato C, Prieur D (2004a) Shewanella profunda sp. nov., isolated from deep marine sediment of the Nankai Trough. Int J Syst Evol Microbiol 54:1943–1949PubMedCrossRefGoogle Scholar
  67. Toffin L, Webster G, Weightman AJ, Fry JC, Prieur D (2004b) Molecular monitoring of culturable bacteria from deep-sea sediment of the Nankai Trough, Leg 190 Ocean Drilling Program. FEMS Microbiol Ecol 48:357–367PubMedCrossRefGoogle Scholar
  68. Toffin L, Zink K, Kato C, Pignet P, Bidault A, Bienvenu N, Birrien J-L, Prieur D (2005) Marinilactibacillus piezotolerans sp. nov., a novel marine lactic acid bacterium isolated from deep sub-seafloor sediment of the Nankai Trough. Int J Syst Evol Microbiol 55:345–351PubMedCrossRefGoogle Scholar
  69. Van Santvoort PJM, De Lange GJ, Thomson J, Cussen H, Wilson TRS, Krom MD, Ströhle K (1996) Active post-depositional oxidation of the most recent sapropel (S1) in sediments of the Eastern Mediterranean. Geochim Cosmochim Acta 60:4007–4024CrossRefGoogle Scholar
  70. Webster G, Parkes RJ, Cragg BA, Newberry CJ, Weightman AJ, Fry JC (2006a) Prokaryotic community composition and biogeochemical processes in deep subseafloor sediments from the Peru Margin. FEMS Microbiol Ecol 58:65–85PubMedCrossRefGoogle Scholar
  71. Webster G, Watt LC, Rinna J, Fry JC, Evershed RP, Parkes RJ, Weightman AJ (2006b) A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulphate-reducing marine sediment enrichment slurries. Environ Microbiol 8:1575–1589PubMedCrossRefGoogle Scholar
  72. Webster G, Yarram L, Freese E, Köster J, Sass H, Parkes J, Weightman A (2007) Bacterial community composition in tidal sediments of the German Wadden Sea using candidate division JS1 targeted PCR-DGGE. FEMS Microbiol Ecol 62:78–89PubMedCrossRefGoogle Scholar
  73. Webster G, Blazejak A, Cragg BA, Schippers A, Sass H, Rinna J, Tang X, Mathes F, Ferdelman T, Fry JC, Weightman AJ, Parkes RJ (2009) Subsurface microbiology and biogeochemistry of a deep, cold-water carbonate mound from the Porcupine Seabight (IODP Expedition 307). Environ Microbiol 11:239–257PubMedCrossRefGoogle Scholar
  74. Webster G, Rinna J, Roussel EG, Fry JC, Weightman AJ, Parkes RJ (2010) Prokaryotic functional diversity in different biogeochemical depth zone in tidal sediments of the Severn Estuary, UK revealed by stable-isotope probing. FEMS Microbiol Ecol 72:179–197Google Scholar
  75. Wellsbury P, Herbert RA, Parkes RJ (1996) Bacterial activity and production in near-surface estuarine and freshwater sediments. FEMS Microbiol Ecol 19:203–214CrossRefGoogle Scholar
  76. Wellsbury P, Goodman K, Barth T, Cragg BA, Barnes SP, Parkes RJ (1997) Deep marine biosphere fuelled by increasing organic matter availability during burial and heating. Nature 388:573–576CrossRefGoogle Scholar
  77. Wellsbury P, Mather I, Parkes RJ (2002) Geomicrobiology of deep, low organic carbon sediments in the Woodlark Basin, Pacific Ocean. FEMS Microbiol Ecol 42:59–70PubMedCrossRefGoogle Scholar
  78. Whelan JK, Oremland R, Tarafa M, Smith R, Howarth R, Lee C (1986) Evidence for sulfate-reducing and methane-producing microorganisms in sediments from sites 618, 619, and 622. In: Bouma AH, Coleman JM, Meyer AW et al (eds) Initial reports of the deep sea drilling project, vol 96. US Govt Printing Office, Washington, pp 767–775Google Scholar
  79. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: The unseen majority. Proc Natl Acad Sci USA 95:6578–6583PubMedCrossRefGoogle Scholar
  80. Wilms R, Köpke B, Sass H, Chang T, Cypionka H, Engelen B (2006) Deep-biosphere bacteria within the subsurface of tidal flat sediments. Environ Microbiol 8:709–719PubMedCrossRefGoogle Scholar
  81. Wilms R, Sass H, Köpke B, Cypionka H, Engelen B (2007) Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea. FEMS Microbiol Ecol 59:611–621PubMedCrossRefGoogle Scholar
  82. Yanagibayashi M, Nogi Y, Li L, Kato C (1999) Changes in the microbial community in Japan Trench sediment from a depth of 6292 m during cultivation without decompression. FEMS Microbiol Lett 170:271–279PubMedCrossRefGoogle Scholar
  83. Zink KG, Wilkes H, Disko U, Elvert M, Horsfield B (2003) Intact phospholipids – microbial “life markers” in marine deep subsurface sediments. Org Geochem 34:755–769CrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.School of Earth and Ocean SciencesCardiff UniversityCardiffUK

Personalised recommendations