Advertisement

Genetics, Evolution, and Applications

  • Noriyuki Doukyu
Reference work entry

There is increasing interest in culturing microorganisms in two-liquid-phase systems consisting of an aqueous medium and a hydrophobic organic solvent. This culture is potentially advantageous for the bioconversion of hydrophobic compounds with low solubility in water. Hydrophobic organic solvents can be toxic to microorganisms. Therefore, organic solvent-tolerant microorganisms can be used as effective biocatalysts in an aqueous-organic solvent two-phase system.

The mechanisms of adaptation and tolerance toward organic solvents, particularly in Pseudomonas putida and Escherichia colistrains, have been extensively studied. These include morphological adaptation, changes of the energetic status, modification of the membrane’s fluidity, changes in the cell wall and outer membrane, modification of surface properties, transformation or degradation of the solvent, active transport of solvents from the membrane into the environment by energy-consuming efflux systems, and modification of...

Keywords

Lithocholic Acid Phenol Hydroxylase Membrane Fusion Protein Toluene Dioxygenase Pseudomonas Oleovorans 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abe A, Inoue A, Usami R, Moriya K, Horikoshi K (1995) Degradation of polyaromatic hydrocarbons by organic solvent-tolerant bacteria from deep sea. Biosci Biotechnol Biochem 59:1154–1156PubMedCrossRefGoogle Scholar
  2. Aono R (1998) Improvement of organic solvent tolerance level of Escherichia coli by overexpression of stress-responsive genes. Extremophiles 2:239–248PubMedCrossRefGoogle Scholar
  3. Aono R, Doukyu N (1996) Stereospecific oxidation of 3β-hydroxysteroids by persolvent fermentation with Pseudomonas sp. ST-200. Biosci Biotechnol Biochem 60:1146–1151CrossRefGoogle Scholar
  4. Aono R, Doukyu N, Kobayashi H, Nakajima H, Horikoshi K (1994a) Oxidative Bioconversion of cholesterol by Pseudomonas sp. strain ST-200 in a water-organic solvent two-phase system. Appl Environ Microbiol 60:2518–2523PubMedGoogle Scholar
  5. Aono R, Kobayashi M, Nakajima H, Kobayashi H (1995) A close correlation between organic solvent tolerance and multiple antibiotic resistance systems. Biosci Biotechnol Biochem 59:213–218PubMedCrossRefGoogle Scholar
  6. Aono R, Negishi T, Aibe K, Inoue A, Horikoshi K (1994b) Mapping of organic solvent tolerance gene ostA in Escherichia coli K-12. Biosci Biotechnol Biochem 58:1231–1235PubMedCrossRefGoogle Scholar
  7. Aono R, Negishi T, Nakajima H (1994c) Cloning of organic solvent tolerance gene ostA that determines n-hexane tolerance level in Escherichia coli. Appl Environ Microbiol 60:4624–4626PubMedGoogle Scholar
  8. Aono R, Tsukagoshi N, Yamamoto M (1998) Involvement of outer membrane protein TolC, a possible member of the mar-sox regulon, in maintenance and improvement of organic solvent tolerance of Escherichia coli K-12. J Bacteriol 180:938–944PubMedGoogle Scholar
  9. Asako H, Kobayashi K, Aono R (1999) Organic solvent tolerance of Escherichia coli is independent of OmpF levels in the membrane. Appl Environ Microbiol 65:294–296PubMedGoogle Scholar
  10. Asako H, Nakajima H, Kobayashi K, Kobayashi M, Aono R (1997) Organic solvent tolerance and antibiotic resistance increased by overexpression of marA in Escherichia coli. Appl Environ Microbiol 63:1428–1433PubMedGoogle Scholar
  11. Bos M, Tefsen B, Geurtsen J, Tommassen J (2004) Identification of an outer membrane protein required for the transport of lipopolysaccharide to the bacterial cell surface. Proc Natl Acad Sci USA 101:9417–9422PubMedCrossRefGoogle Scholar
  12. Cole S, Eiglmeier K, Ahmed S, Honore N, Elmes L, Anderson W, Weiner JH (1988) Nucleotide sequence and gene-polypeptide relationship of the glpABC operon encoding the anaerobic sn-glycerol-3-phosphate dehydrogenase of Escherichia coli K-12. J Bacteriol 170:2448–2456PubMedGoogle Scholar
  13. Devi P, Naik C, Rodrigues C (2006) Biotransformation of citrinin to decarboxycitrinin using an organic solvent-tolerant marine bacterium, Moraxella sp. MB1. Mar Biotechnol (NY) 8:129–138CrossRefGoogle Scholar
  14. Doukyu N, Aono R (1997) Biodegradation of indole at high concentration by persolvent fermentation with Pseudomonas sp. ST-200. Extremophiles 1:100–105PubMedCrossRefGoogle Scholar
  15. Doukyu N, Arai T, Aono R (1997) Effects of organic solvents on indigo formation by Pseudomonas sp. strain ST-200 growth with high levels of indole. Biosci Biotechnol Biochem 62:1075–1080CrossRefGoogle Scholar
  16. Doukyu N, Arai T, Aono R (1998) Effects of organic solvents on indigo formation by Pseudomonas sp. strain ST-200 growth with high levels of indole. Biosci Biotechnol Biochem 62:1075–1080CrossRefGoogle Scholar
  17. Doukyu N, Kobayashi H, Nakajima H, Aono R (1996) Control with organic solvents of efficiency of persolvent fermentation by Pseudomonas sp. strain ST-200. Biosci Biotechnol Biochem 60:1612–1616CrossRefGoogle Scholar
  18. Doukyu N, Nakano T, Okuyama Y, Aono R (2002) Isolation of an Acinetobacter sp. ST-550 which produces a high level of indigo in a water-organic solvent two-phase system containing high levels of indole. Appl Microbiol Biotechnol 58:543–546PubMedCrossRefGoogle Scholar
  19. Doukyu N, Toyoda K, Aono R (2003) Indigo production by Escherichia coli carrying phenol hydroxylase gene from Acinetobacter sp. strain ST-550 in a water-organic solvent two phase system. Appl Microbiol Biotechnol 60:720–725PubMedGoogle Scholar
  20. Erni B, Zanolari B (1985) The mannose-permease of the bacterial phosphotransferase system. Gene cloning and purification of the enzyme IIMan/IIIMan complex of Escherichia coli. J Biol Chem 260:15495–15503PubMedGoogle Scholar
  21. Falk-Krzesinski H, Wolfe A (1998) Genetic analysis of the nuo locus, which encodes the proton-translocating NADH dehydrogenase in Escherichia coli. J Bacteriol 180:1174–1184PubMedGoogle Scholar
  22. Ferrante A, Augliera J, Lewis K, Klibanov A (1995) Cloning of an organic solvent-resistance gene in Escherichia coli: the unexpected role of alkylhydroperoxide reductase. Proc Natl Acad Sci USA 92:7617–7621PubMedCrossRefGoogle Scholar
  23. Fralick J (1996) Evidence that TolC is required for functioning of the Mar/AcrAB efflux pump of Escherichia coli. J Bacteriol 178:5803–5805PubMedGoogle Scholar
  24. Geerse R, Ruig C, Schuitema A, Postma P (1986) Relationship between pseudo-HPr and the PEP: fructose phosphotransferase system in Salmonella typhimurium and Escherichia coli. Mol Gen Genet 203:435–444PubMedCrossRefGoogle Scholar
  25. Heipieper H, Neumann G, Cornelissen S, Meinhardt F (2007) Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl Microbiol Biotechnol 74:961–973PubMedCrossRefGoogle Scholar
  26. Hüsken L, Dalm M, Tramper J, Wery J, de Bont J, Beeftink R (2001) Integrated bioproduction and extraction of 3-methylcatechol. J Biotechnol 88:11–19PubMedCrossRefGoogle Scholar
  27. Hüsken LE, Oomes M, Schroën K, Tramper J, de Bont JA, Beeftink R (2002) Membrane-facilitated bioproduction of 3-methylcatechol in an octanol/water two-phase system. J Biotechnol 96:281–289PubMedCrossRefGoogle Scholar
  28. Isken S, de Bont J (1998) Bacteria tolerant to organic solvents. Extremophiles 2:229–238PubMedCrossRefGoogle Scholar
  29. Kato C, Inoue A, Horikoshi K (1996) Isolating and characterizing deep-sea marine microorganisms. Trends Biotechnol 14:6–12PubMedCrossRefGoogle Scholar
  30. Kieboom J, Dennis J, de Bont J, Zylstra G (1998) Identification and molecular characterization of an efflux pump involved in Pseudomonas putida S12 solvent tolerance. J Biol Chem 273:85–91PubMedCrossRefGoogle Scholar
  31. Kleerebezem M, Crielaard W, Tommassen J (1996) Involvement of stress protein PspA (phage shock protein A) of Escherichia coli in maintenance of the protonmotive force under stress conditions. EMBO J 15:162–171PubMedGoogle Scholar
  32. Kobayashi H, Yamamoto M, Aono R (1998) Appearance of a stress-response protein, phage-shock protein A, in Escherichia coli exposed to hydrophobic organic solvents. Microbiology 144:353–359PubMedCrossRefGoogle Scholar
  33. Kobayashi K, Tsukagoshi N, Aono R (2003) Suppression of hypersensitivity of Escherichia coli acrB mutant to organic solvents by integrational activation of the acrEF operon with the IS1 or IS2 element. J Bacteriol 183:2646–2653CrossRefGoogle Scholar
  34. Li L, Komatsu T, Inoue A, Horikoshi K (1995) A toluene-tolerant mutant of Pseudomonas aeruginosa lacking the outer membrane protein F. Biosci Biotechnol Biochem 59:2358–2359PubMedCrossRefGoogle Scholar
  35. Li X-Z, Li Z, Poole K (1998) Role of the multidrug efflux systems of Pseudomonas aeruginosa in organic solvent tolerance. J Bacteriol 180:2987–2991PubMedGoogle Scholar
  36. Ma D, Cook D, Alberti MP, Pon NG, Nikaido H, Hearst J (1995) Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli. Mol Microbiol 16:45–55PubMedCrossRefGoogle Scholar
  37. Martinez-Antonio A, Collado-Vides J (2003) Identifying global regulators in transcriptional regulatory networks in bacteria. Curr Opin Microbiol 6:482–489PubMedCrossRefGoogle Scholar
  38. Moriya K, Horikoshi K (1993a) A benzene-tolerant bacterium utilizing sulfur compounds isolated from deep sea. J Ferment Bioeng 76:397–399CrossRefGoogle Scholar
  39. Moriya K, Horikoshi K (1993b) Isolation of a benzene-tolerant bacterium and its hydrocarbon degradation. J Ferment Bioeng 76:168–173CrossRefGoogle Scholar
  40. Moriya K, Yanagitani S, Usami R, Horikoshi K (1995) Isolation and some properties of an organic-solvent-tolerant marine bacterium degrading cholesterol. J Mar Biotechnol 2:131–133Google Scholar
  41. Murdock D, Ensley B, Serdar C, Thalen M (1993) Construction of metabolic operons catalyzing the de novo biosynthesis of indigo in Escherichia coli. Biotechnology 11:381–386PubMedCrossRefGoogle Scholar
  42. Nakajima H, Kobayashi K, Kobayashi M, Asako H, Aono R (1995a) Overexpression of the robA gene increases organic solvent tolerance and multiple antibiotic and heavy metal ion resistance in Escherichia coli. Appl Environ Microbiol 61:2302–2307PubMedGoogle Scholar
  43. Nakajima H, Kobayashi M, Negishi T, Aono R (1995b) soxRS gene increased the level of organic solvent tolerance in Escherichia coli. Biosci Biotechnol Biochem 59:1323–1325PubMedCrossRefGoogle Scholar
  44. Nikaido H, Rosenberg E, Foulds J (1983) Porin channels in Escherichia coli: studies with β-lactams in intact cells. J Bacteriol 153:232–240PubMedGoogle Scholar
  45. Ohtsu I, Kakuda N, Tsukagoshi N, Dokyu N, Takagi H, Wachi M, Aono R (2004) Transcriptional analysis of the ostA/imp gene involved in organic solvent sensitivity in Escherichia coli. Biosci Biotechnol Biochem 68:458–461PubMedCrossRefGoogle Scholar
  46. Okochi M, Kurimoto M, Shimizu K, Honda H (2007) Increase of organic solvent tolerance by overexpression of manXYZ in Escherichia coli. Appl Microbiol Biotechnol 73:1394–1399PubMedCrossRefGoogle Scholar
  47. Okochi M, Kurimoto M, Shimizu K, Honda H (2008) Effect of global transcriptional regulators related to carbohydrate metabolism on organic solvent tolerance in Escherichia coli. J Biosci Bioeng 105:389–394PubMedCrossRefGoogle Scholar
  48. Paulsen I, Brown M, Skurray R (1996) Proton-dependent multidrug efflux systems. Microbiol Rev 60:575–608PubMedGoogle Scholar
  49. Ramos J, Duque E, Huertas M, Haïdour A (1995) Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons. J Bacteriol 177:3911–3916PubMedGoogle Scholar
  50. Ramos J, Duque E, Godoy P, Segura A (1998) Efflux pumps involved in toluene tolerance in Pseudomonas putida DOT-T1E. J Bacteriol 180:3323–3329PubMedGoogle Scholar
  51. Ramos J, Duque E, Gallegos M, Godoy P, Ramos-Gonzalez M, Rojas A, Teran W, Segura A (2002) Mechanisms of solvent tolerance in gram-negative bacteria. Annu Rev Microbiol 56:743–768PubMedCrossRefGoogle Scholar
  52. Sardessai Y, Bhosle S (2003) Isolation of an organic-solvent-tolerant cholesterol-transforming Bacillus species, BC1, from coastal sediment. Mar Biotechnol (NY) 5:116–118Google Scholar
  53. Schwartz R, McCoy C (1977) Epoxidation of 1, 7-octadiene by Pseudomonas oleovorans: fermentation in the presence of cyclohexane. Appl Environ Microbiol 34:47–49PubMedGoogle Scholar
  54. Shimizu K, Hayashi S, Doukyu N, Kobayashi T, Honda H (2005a) Time-course data analysis of gene expression profiles reveals purR regulon concerns in organic solvent tolerance in Escherichia coli. J Biosci Bioeng 99:72–74PubMedCrossRefGoogle Scholar
  55. Shimizu K, Hayashi S, Kako T, Suzuki M, Tsukagoshi N, Doukyu N, Kobayashi T, Honda H (2005b) Discovery of glpC, an organic solvent tolerance-related gene in Escherichia coli, using gene expression profiles from DNA microarrays. Appl Environ Microbiol 71:1093–1096PubMedCrossRefGoogle Scholar
  56. Smith D, Kassam T, Singh B, Elliott J (1992) Escherichia coli has two homologous glutamate decarboxylase genes that map to distinct loci. J Bacteriol 174:5820–5826PubMedGoogle Scholar
  57. Suzuki Y, Doukyu N, Aono R (1998) Lithocholic acid side-chain cleavage to produce 17-keto or 22-aldehyde steroids by Pseudomonas putida strain ST-491 grown in the presence of organic solvent, diphenyl ether. Biosci Biotechnol Biochem 62:2182–2188PubMedCrossRefGoogle Scholar
  58. Tao F, Yu B, Xu P, Ma C (2006) Biodesulfurization in biphasic systems containing organic solvents. Appl Environ Microbiol 72:4604–4609PubMedCrossRefGoogle Scholar
  59. Tsukagoshi N, Aono R (2000) Entry into and release of solvents by Escherichia coli in an organic-aqueous two-liquid-phase system and substrate specificity of the AcrAB-TolC solvent-extruding pump. J Bacteriol 182:4803–4810PubMedCrossRefGoogle Scholar
  60. Weber F, Ooijkaas L, Schemen R, Hartmans S, de Bont J (1993) Adaptation of Pseudomonas putida S12 to high concentrations of styrene and other organic solvents. Appl Environ Microbiol 59:3502–3504PubMedGoogle Scholar
  61. Wery J, Mendes da Silva D, de Bont J (2000) A genetically modified solvent-tolerant bacterium for optimized production of a toxic fine chemical. Appl Microbiol Biotechnol 54:180–185PubMedCrossRefGoogle Scholar
  62. White D, Goldman J, Demple B, Levy S (1997) Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli. J Bacteriol 179:6122–6126PubMedGoogle Scholar
  63. Wierckx N, Ballerstedt H, de Bont J, Wery J (2005) Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose. Appl Environ Microbiol 71:8221–8227PubMedCrossRefGoogle Scholar
  64. Witholt B, de Smet M, Kingma J, van Beilen J, Kok M, Lageveen R, Eggink G (1990) Bioconversions of aliphatic compounds by Pseudomonas oleovorans in multiphase bioreactors: background and economic potential. Trends Biotechnol 8:46–52PubMedCrossRefGoogle Scholar
  65. Wubbolts M, Favre-Bulle O, Witholt B (1996) Biosynthesis of synthons in two-liquid-phase media. Biotechnol Bioeng 52:301–308PubMedCrossRefGoogle Scholar
  66. Yamashita S, Satoi M, Iwasa Y, Honda K, Sameshima Y, Omasa T, Kato J, Ohtake H (2007) Utilization of hydrophobic bacterium Rhodococcus opacus B-4 as whole-cell catalyst in anhydrous organic solvents. Appl Microbiol Biotechnol 74:761–767PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.Bio-Nano Electronic Research CenterToyo UniversityKawagoeJapan
  2. 2.Graduate School of Interdisciplinary New ScienceToyo UniversityKawagoeJapan

Personalised recommendations