Skip to main content

Microbiology of Volcanic Environments

  • Reference work entry
Extremophiles Handbook

Introduction

Volcanism may be defined as “the manifestation at the surface of a planet or satellite of internal thermal processes through the emission at the surface of solid, liquid, or gaseous products” (Francis 1993). At any given time there are active volcanoes in some location on the Earth (Schminke 2004). Environments resulting from volcanic activity are diverse, from acidic hot springs to deep-ocean basaltic habitats and volcanic soils.

It is not possible to do justice to the microbiological investigation of all these environments in a single chapter. As thermophilic microorganisms are covered by separate chapters they will not be discussed here. In this chapter focus is given to rocky volcanic environments generated by eruptions and the soils they produce. In terms of land area, volcanic rocks and soil dominate the products of volcanism. For example in India alone, the volcanically formed Deccan Traps, an area of basalt, cover over one million square kilometers. Volcanic rocks...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abed RMM, Zein B, Al-Thukair A, de Beer D (2007) Phylogenetic diversity and activity of aerobic heterotrophic bacteria from a hypersaline oil-polluted microbial mat. Syst Appl Microbiol 30:319–330

    Article  PubMed  CAS  Google Scholar 

  • Adamo P, Violante P (1991) Weathering of volcanic rocks from Mt. Vesuvius associated with the lichen Stereocaulum vesuvianum. Pedobiologia 35:209–217

    CAS  Google Scholar 

  • Adamo P, Marchetiello A, Violante P (1993) The weathering of mafic rocks by lichens. Lichenologist 25:285–297

    Google Scholar 

  • Agee JK (1993) Fire ecology of Pacific Northwest Forests. Island Press, Washington

    Google Scholar 

  • Arnalds O (2004) Volcanic soils of Iceland. Catena 56:3–20

    Article  CAS  Google Scholar 

  • Bach W, Edwards KJ (2003) Iron and sulphide oxidation within the basaltic ocean crust: implications for chemolithoautotrophic microbial biomass production. Geochim Cosmochim Acta 67:3871–3887

    Article  CAS  Google Scholar 

  • Bell RA (1993) Cryptoendolithic algae of hot semi-arid lands and deserts. J Phycol 29:133–139

    Article  Google Scholar 

  • Büdel B, Wessels DCJ (1991) Rock inhabiting blue-green algae/cyanobacteria from hot arid regions. Algol Stud 64:385–398

    Google Scholar 

  • Büdel B, Weber B, Kühl M, Pfanz H, Sültemeyer D, Wessels D (2004) Reshaping of sandstone surfaces by cryptoendolithic cyanobacteria: bioalkalization causes chemical weathering in arid landscapes. Geobiology 2:261–268

    Article  Google Scholar 

  • Carson JL, Brown RM (1978) Studies of Hawaiian freshwater and soil algae 2. Algal colonization and succession on a dated volcanic substrate. J Phycol 14:171–178

    Article  CAS  Google Scholar 

  • Cockell CS, Olsson-Francis K, Knowles F, Kelly L, Herrera A, Thorsteinsson T, Marteinsson V (2009a) Bacteria in weathered basaltic glass, Iceland. Geomicrobiol J 26:491–507

    Article  CAS  Google Scholar 

  • Cockell CS, Olsson-Francis K, Herrera A, Meunier A (2009b) Alteration textures in terrestrial volcanic glass and the associated bacterial community. Geobiology 7:50–65

    Article  PubMed  CAS  Google Scholar 

  • Cockell CS, Kelly LC, McGarvie D, Marteinsson V, 476 Thorsteinsson T, Bailey M, Whiteley A, James P, 477 Piceno YM, Anderson GL, DeSantis TZ, Daly R 478 (2010) Microbial diversity of weathered terrestrial 479 volcanic rocks. FEMS Microbiol Rev (in press)

    Google Scholar 

  • Dahlgren R, Shoji S, Nanzyo M (1993) Mineralogical characteristics of volcanic ash soils. In: Shoji S, Nanzyo M (eds) Volcanic Ash soils genesis, properties, and utilization. Elsevier, Amsterdam, pp 101–143

    Chapter  Google Scholar 

  • Daughney CJ, Rioux J-P, Fortin D, Pichler T (2004) Laboratory investigation of the role of bacteria in the weathering of basalt near deep sea hydrothermal vents. Geomicrobiol J 21:21–31

    Article  CAS  Google Scholar 

  • de la Torre JR, Goebel BM, Friedmann EI, Pace NR (2003) Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol 69:3858–3867

    Article  PubMed  CAS  Google Scholar 

  • del Pino JSN, Almenar ID, Rivero FN, Rodriguez-Rodriguez A, Rodriguez CA, Herrera CA, Garcia JAG, Hernandez JLM (2007) Temporal evolution of organic carbon and nitrogen forms in volcanic soils under broom scrub affected by a wildfire. Sci Total Environ 378:245–252

    Article  Google Scholar 

  • Dessert C, Dupré B, François LM, Schott J, Gaillardet J, Chakrapani GJ, Bajpai S (2001) Erosion of Deccan Traps determined by river geochemistry: impact on the global climate and the 87Sr/86Sr ratio of seawater. Earth Planet Sci Lett 188:459–474

    Article  CAS  Google Scholar 

  • Dessert C, Dupré B, Gaillardet J, François LM, Allègre CJ (2003) Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chem Geol 202:257–273

    Article  CAS  Google Scholar 

  • Dunfield KE, King GM (2005) Analysis of the distribution and diversity in recent Hawaiian volcanic deposits of a putative carbon monoxide dehydrogenase large subunit gene. Environ Microbiol 7:1405–1412

    Article  PubMed  CAS  Google Scholar 

  • Edwards KJ, Rogers DR, Wirsen CO, McCollom TM (2003) Isolation and characterisation of novel psychrophilic, neutrophilic, Fe-oxidising, chemolithoautotrophic α- and γ- Proteobacteria from the deep sea. Appl Environ Microbiol 69:2906–2913

    Article  PubMed  CAS  Google Scholar 

  • Eppard M, Krumbein W, Koch C, Rhiel E, Staley J, Stackebrandt E (1996) Morphological, physiological, and molecular characterization of actinomycetes isolated from dry soil, rocks, and monument surfaces. Arch Microbiol 166:12–22

    Article  PubMed  CAS  Google Scholar 

  • Fermani P, Mataloni G, Van de Vijver B (2007) Soil microalgal communities on an Antarctic active volcano (Deception Iceland, South Shetlands). Polar Biol 30:1381–1393

    Article  Google Scholar 

  • Francis P (1993) Volcanoes: a planetary perspective. Oxford University Press, Oxford, p 2

    Google Scholar 

  • Friedmann EI (1980) Endolithic microbial life in hot and cold deserts. Orig Life Evol Biosph 10:223–235

    Article  CAS  Google Scholar 

  • Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053

    Article  PubMed  CAS  Google Scholar 

  • Gaylarde PM, Jungblut A, Gaylarde CC, Neilan BA (2006) Endolithic phototrophs from an active geothermal region in New Zealand. Geomicrobiol J 23:579–587

    Article  CAS  Google Scholar 

  • Gíslason SR, Eugster HP (1987) Meteoric water-basalt interactions I A laboratory study. Geochim Cosmochim Acta 51:2827–2840

    Article  Google Scholar 

  • Gomez-Alvarez V, King GM, Nüsslein K (2007) Comparative bacterial in recent Hawaiian volcanic deposits of different ages. FEMS Microbiol Ecol 60:60–73

    Article  PubMed  CAS  Google Scholar 

  • Gross W, Küver J, Tischendorf G, Bouchaala N, Büsch W (1998) Cryptoendolithic growth of the red alga Galdieria sulphuraria in volcanic areas. Eur J Phycol 33:25–31

    Article  Google Scholar 

  • Gundlapally SR, Garcia-Pichel F (2006) The community and phylogenetic diversity of biological soil crusts in the Colorado Plateau studied by molecular fingerprinting and intensive cultivation. Microb Ecol 52:345–357

    Article  PubMed  Google Scholar 

  • Halvorson JJ, Smith JL, Franz EH (1991) Lupine influence on soil carbon, nitrogen and microbial activity in developing ecosystems at Mount St. Helens. Oecologia 87:162–170

    Article  Google Scholar 

  • Halvorson JJ, Franz EH, Smith JL, Black RA (1992) Nitrogenase activity, nitrogen fixation, and nitrogen inputs by lupines at Mount St. Helens. Ecology 73:87–98

    Article  CAS  Google Scholar 

  • Herrera A, Cockell CS, Self S, Blaxter M, Reitner J, Arp G, Dröse W, Tindle A (2008) Bacterial colonization and weathering of terrestrial obsidian rock in Iceland. Geomicrobiol J 25:25–37

    Article  CAS  Google Scholar 

  • Herrera A, Cockell CS, Self S, Blaxter M, Reitner J, Thorsteinsson T, Arp G, Dröse W, Tindle A (2009) A cryptoendolithic community in volcanic glass. Astrobiology 9:369–381

    Article  PubMed  CAS  Google Scholar 

  • Hopkins DW, Badalucco L, English LC, Meli SM, Chudek JA, Ioppolo A (2007) Plant litter decomposition and microbial characteristics in volcanic soils (Mt Etna, Sicily) at different stages of development. Biol Fertil Soils 43:461–469

    Article  Google Scholar 

  • Ibekwe AM, Kennedy AC, Halvorson JJ, Yang CH (2007) Characterization of developing microbial communities in Mount St. Helens pyroclastic substrate. Soil Biol Biochem 39:2496–2507

    Article  CAS  Google Scholar 

  • Jezberova J (2006) Phenotypic diversity and phylogeny of picocyanobacteria in mesotrophic and eutrophic freshwater reservoirs investigated by a cultivation-dependent polyphasic approach. PhD thesis, University of South Bohemia, Czech Republic

    Google Scholar 

  • Katana A, Kwiatowski JM, Spalik K, Zakrys B, Szalacha E, Szymanska H (2001) Phylogenetic position of Koliella (Chlorophyta) as inferred from nuclear and chloroplast SSU rDNA. J Phycol 37:443–451

    Article  CAS  Google Scholar 

  • Kelly L, Cockell CS, Piceno YM, Anderson G, Thorsteinsson T, Marteinsson V (2010) Bacterial Diversity of Weathered Terrestrial Icelandic Volcanic Glasses. Microbial Ecology (in press)

    Google Scholar 

  • Kimble JM, Ping CL, Sumner ME, Wilding LP (2000) Andosols. In: Sumner ME (ed) Handbook of soil science. CRC Press, Boca Raton, pp E209–E224

    Google Scholar 

  • King GM (2003) Contributions of atmospheric CO and hydrogen uptake to microbial dynamics on recent Hawaiian volcanic deposits. Appl Environ Microbiol 69:4067–4075

    Article  PubMed  CAS  Google Scholar 

  • Le Bas MJ, Le Maitre RW, Woolley AR (1992) The construction of the total alkali-silica chemical classification of volcanic rocks. Mineral Petrol 46:1–22

    Article  CAS  Google Scholar 

  • Lukito HP, Kouno K, Ando T (1998) Phosphorus requirements of microbial biomass in a regosol and an andosol. Soil Biol Biochem 30:865–872

    Article  CAS  Google Scholar 

  • Lysnes K, Thorseth IH, Steinbu BO, Øvreås L, Torsvik T, Pedersen RB (2004) Microbial community diversity in seafloor basalt from the Arctic spreading ridges. FEMS Microbiol Ecol 50:213–230

    Article  PubMed  CAS  Google Scholar 

  • Magonthier M-C, Petit J-C, Dran J-C (1992) Rhyolitic glasses as natural analogues of nuclear waste glasses: behaviour of an Icelandic glass upon natural aqueous corrosion. Appl Geochem 7(Suppl. 1):83–93

    Google Scholar 

  • Murray AE, Grzymski JJ (2007) Diversity and genomics of Antarctic marine micro-organisms. Philos Trans R Soc Lond B 362:2259–2271

    Article  CAS  Google Scholar 

  • Nagy ML, Perez A, Garcia-Pichel F (2005) The prokaryotic diversity of biological crusts in the Sonoran desert (Organ Pipe Cactus National Monument, AZ). FEMS Microbiol Ecol 54:233–245

    Article  PubMed  CAS  Google Scholar 

  • Nanba K, King GM, Dunfield K (2004) Analysis of facultative lithotroph distribution and diversity of volcanic deposits by use of the large subunit of Ribulose 1, 5-bisphosphate carboxylase/oxygenase. Appl Environ Microbiol 70:2245–2253

    Article  PubMed  CAS  Google Scholar 

  • Nemergut DR, Anderson SP, Cleveland CC, Martin AP, Miller AE, Seimon A, Schmidt SK (2007) Microbial community succession in an unvegetated, recently deglaciated soil. Microbiol Ecol 53:110–122

    Article  Google Scholar 

  • Nogales B, Moore ER, Llobet-Brossa E, Rossello-Mora R, Amann R, Timmis KN (2001) Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil. Appl Environ Microbiol 67:1874–1884

    Article  PubMed  CAS  Google Scholar 

  • Nüsslein K, Tiedje JM (1998) Characterization of the dominant and rare members of a young Hawaiian soil bacterial community with small-subunit ribosomal DNA amplified from DNA fractionated on the basis of its guanine and cytosine composition. Appl Environ Microbiol 64:1283–1289

    PubMed  Google Scholar 

  • O’Sullivan LA, Fuller KE, Thomas EM, Turley CM, Fry JC, Weightman AJ (2004) Distribution and culturability of the uncultivated “AGG58 cluster” of the Bacteroidetes phylum in aquatic environments. FEMS Microbiol Ecol 47:359–370

    Article  PubMed  Google Scholar 

  • Oelkers EH, Gíslason SR (2001) The mechanism, rates, and consequences of basaltic glass dissolution: I An experimental study of the dissolution rates of basalatic glass as a function of aqueous Al, Si and oxalic acid concentration at 25°C and pH 3 and 11. Geochim Cosmochim Acta 65:3671–3681

    Article  CAS  Google Scholar 

  • Omelon CR, Pollard WH, Ferris FG (2006) Chemical and ultrastructural characterization of high arctic cryptoendolithic habitats. Geomicrobiol J 23:189–200

    Article  CAS  Google Scholar 

  • Orcutt B, Bailey B, Staudigel H, Tebo BM, Edwards KJ (2009) An interlaboratory comparison of 16S-rRNA gene-based terminal restriction fragment length polymorphism and sequencing methods for assessing microbial diversity of seafloor basalts. Environ Microbiol 11:1728–1738

    Article  PubMed  CAS  Google Scholar 

  • Oskarsson H, Arnalds O, Gudmundsson J, Gudbergsson G (2004) Organic carbon in Icelandic Andosols: geographical variation and impact of erosion. Catena 56:225–238

    Article  CAS  Google Scholar 

  • Parfitt RL, Kimble JM (1989) Conditions for formation of allophane in soils. Soil Sci Soc Am J 53:971–977

    Article  CAS  Google Scholar 

  • Petit J-C (1992) Natural analogues for the design and performance assessment of radioactive waste forms: a review. J Geochem Explor 46:1–33

    Article  CAS  Google Scholar 

  • Pierson BK, Mitchell HK, Ruff-Roberts AL (1993) Chloroflexus aurantiacus and ultraviolet radiation: implications for archean shallow-water stromatolites. Orig Life Evol Biosph 23:243–260

    Article  Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Funct Plant Biol 28:897–906

    Article  Google Scholar 

  • Saiz-Jimenez C, Garcia-Rowe J, Garcia del Cura MA, Ortega-Calvo JJ, Roekens E, Van Grieken R (1990) Endolithic cyanobacteria in Maastricht Limestone. Sci Total Environ 94:209–220

    Article  CAS  Google Scholar 

  • Santelli CM, Orcutt BN, Banning E, Bach W, Moyer CL, Sogin ML, Staudigel H, Edwards KJ (2008) Abundance and diversity of microbial life in ocean crust. Nature 453:643–657

    Article  Google Scholar 

  • Schminke HU (2004) Volcanism. Springer, Heidelberg

    Book  Google Scholar 

  • Shivaji S, Reddy GSN, Aduri RP, Kutty R, Ravenschlag K (2004) Bacterial diversity of a soil sample from Schirmacher Oasis, Antarctica. Cell Mol Biol 50:525–536

    PubMed  CAS  Google Scholar 

  • Staudigel H, Chastain RA, Yayanos A, Boucier W (1995) Biologically mediated dissolution of glass. Chem Geol 126:147–154

    Article  CAS  Google Scholar 

  • Staudigel H, Yayanos A, Chastain R, Davies G, Th Verdurmen EA, Schiffman P, Boucier R, de Baar H (1998) Biologically mediated dissolution of volcanic glass in seawater. Earth Planet Sci Lett 164:233–244

    Article  CAS  Google Scholar 

  • Staudigel H, Furnes H, Banerjee NR, Dilek Y, Muehlenbachs K (2006) Microbes and volcanoes: a tale from the oceans, ophiolites, and greenstone belts. GSA Today 16:4–102

    Article  Google Scholar 

  • Stefánsson A, Gíslason SR (2001) Chemical weathering of basalts, SW Iceland Effect of rock crystallinity and secondary minerals on chemical fluxes to the ocean. Am J Sci 301:513–556

    Google Scholar 

  • Stroncik NA, Schminke HU (2001) Evolution of palagonite: crystallization, chemical changes, and element budget. Geochem Geophys Geosyst 2:1017. doi:10.1029/2000GC000102, 2001

    Article  Google Scholar 

  • Tebo BM, Johnson HA, McCarthy JK, Templeton AS (2005) Geomicrobiology of manganese(II) oxidation. Trends Microbiol 13:421–428

    Article  PubMed  CAS  Google Scholar 

  • Templeton AS, Staudigel H, Tebo BM (2005) Diverse Mn(II)-oxidising bacteria isolated from submarine basalts at Loihi Seamount. Geomicrobiol J 22:127–139

    Article  CAS  Google Scholar 

  • Tester PA, Varnam SM, Culver ME, Eslinger DL, Stumpf RP, Swift RN, Yungel JK, Black MD, Litaker RW (2003) Airborne detection of ecosystem responses to an extreme event: phytoplankton displacement and abundance after hurricane induced flooding in the Pamlico-Albemarle Sound system, North Carolina. Estuaries 26:1353–1364

    Article  Google Scholar 

  • Thorseth IH, Furnes H, Tumyr O (1991) A textural and chemical study of Icelandic palagonite of varied composition and its bearing on the mechanism of the glass-palagonite transformation. Geochim Cosmochim Acta 55:731–749

    Article  CAS  Google Scholar 

  • Thorseth IH, Torsvik T, Torsvik V, Torsvik V, Daae FL, Pedersen RB (2001) Diversity of life in ocean floor basalt. Earth Planet Sci Lett 194:31–37

    Article  CAS  Google Scholar 

  • Thorseth IH, Pedersen RB, Christie DM (2003) Microbial alteration of 0-30-Ma seafloor and sub-seafloor basaltic glasses from the Australian Antarctic Discordance. Earth Planet Sci Lett 215:237–247

    Article  CAS  Google Scholar 

  • Torsvik T, Furnes H, Muehlenbachs K, Thorseth IH, Tumyr O (1998) Evidence for microbial activity at the glass-alteration interface in oceanic basalts. Earth Planet Sci Lett 162:165–176

    Article  CAS  Google Scholar 

  • Turmel M, Ehara M, Otis C, Lemieux C (2002) Phylogenetic relationships among streptophytes as inferred from chloroplast small and large subunit rRNA gene sequences. J Phycol 38:364–375

    Article  Google Scholar 

  • Turner S (1997) Molecular systematics of oxygenic photosynthetic bacteria. Plant Syst Evol 11:13–52, Suppl

    Article  CAS  Google Scholar 

  • Ustinova I, Krienitz L, Huss VAR (2001) Closteriopsis acicularis (G.M. Smith) Belcher et Swale us a fusiform alga closely related to Chlorella kessleri Fott et Nováková (Chlorophyta, Terbouxiophyceae). Eur J Phycol 36:341–351

    Article  Google Scholar 

  • Van Thienen P, Benzerara K, Brueur D, Gillmann C, Labrosse S, Lognonne P, Spohn T (2007) Water, life and planetary habitability. Space Sci Rev 129:167–203

    Article  CAS  Google Scholar 

  • Walker JJ, Pace NR (2007) Phylogenetic composition of rocky mountain endolithic microbial ecosystems. Appl Environ Microbiol 73:3497–3504

    Article  PubMed  CAS  Google Scholar 

  • Walker JJ, Spear JR, Pace NR (2005) Geobiology of a microbial endolithic community in the Yellowstone geothermal environment. Nature 434:1011–1014

    Article  PubMed  CAS  Google Scholar 

  • Walton AW (2008) Microtubules in basalt glass from Hawaii Scientific Driling Project #2 phase 1 core and Hilina slope, Hawaii: evidence of the occurrence and behavior of endolithic microorganisms. Geobiology 6:351–364

    Article  PubMed  CAS  Google Scholar 

  • Weber B, Wessels DCJ, Büdel B (1996) Biology and ecology of cryptoendolithic cyanobacteria of a sandstone outcrop in the Northern Province, South Africa. Algol Stud 83:565–579

    Google Scholar 

  • Wolff-Boenisch D, Gíslason SR, Oelkers EH, Putnis CV (2004) The dissolution rates of natural glasses as a function of their composition at pH 4 and 10, and temperatures from 25 to 74°C. Geochim Cosmochim Acta 68:4843–4858

    Article  CAS  Google Scholar 

  • Wolff-Boenisch D, Gíslason SR, Oelkers EH (2006) The effect of crystallinity on dissolution rates and CO2 consumption capacity of silicates. Geochim Cosmochim Acta 70:858–870

    Article  CAS  Google Scholar 

  • Wu X, Xi WY, Ye WJ, Yang H (2007) Bacterial community composition of a shallow hypertrophic freshwater lake in China. FEMS Microbiol Ecol 61:85–96

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Leverhulme Trust (project number F/00 269/N) and the Royal Society for support for the work on microorganisms in volcanic environments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles S. Cockell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this entry

Cite this entry

Cockell, C.S., Kelly, L., Summers, S. (2011). Microbiology of Volcanic Environments. In: Horikoshi, K. (eds) Extremophiles Handbook. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53898-1_44

Download citation

Publish with us

Policies and ethics