Advertisement

Microbiology of Volcanic Environments

  • Charles S. Cockell
  • Laura Kelly
  • Stephen Summers

Introduction

Volcanism may be defined as “the manifestation at the surface of a planet or satellite of internal thermal processes through the emission at the surface of solid, liquid, or gaseous products” (Francis 1993). At any given time there are active volcanoes in some location on the Earth (Schminke 2004). Environments resulting from volcanic activity are diverse, from acidic hot springs to deep-ocean basaltic habitats and volcanic soils.

It is not possible to do justice to the microbiological investigation of all these environments in a single chapter. As thermophilic microorganisms are covered by separate chapters they will not be discussed here. In this chapter focus is given to rocky volcanic environments generated by eruptions and the soils they produce. In terms of land area, volcanic rocks and soil dominate the products of volcanism. For example in India alone, the volcanically formed Deccan Traps, an area of basalt, cover over one million square kilometers. Volcanic rocks...

Keywords

Volcanic Rock Microbial Diversity Volcanic Soil Basaltic Glass Knipovich Ridge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank the Leverhulme Trust (project number F/00 269/N) and the Royal Society for support for the work on microorganisms in volcanic environments.

References

  1. Abed RMM, Zein B, Al-Thukair A, de Beer D (2007) Phylogenetic diversity and activity of aerobic heterotrophic bacteria from a hypersaline oil-polluted microbial mat. Syst Appl Microbiol 30:319–330PubMedCrossRefGoogle Scholar
  2. Adamo P, Violante P (1991) Weathering of volcanic rocks from Mt. Vesuvius associated with the lichen Stereocaulum vesuvianum. Pedobiologia 35:209–217Google Scholar
  3. Adamo P, Marchetiello A, Violante P (1993) The weathering of mafic rocks by lichens. Lichenologist 25:285–297Google Scholar
  4. Agee JK (1993) Fire ecology of Pacific Northwest Forests. Island Press, WashingtonGoogle Scholar
  5. Arnalds O (2004) Volcanic soils of Iceland. Catena 56:3–20CrossRefGoogle Scholar
  6. Bach W, Edwards KJ (2003) Iron and sulphide oxidation within the basaltic ocean crust: implications for chemolithoautotrophic microbial biomass production. Geochim Cosmochim Acta 67:3871–3887CrossRefGoogle Scholar
  7. Bell RA (1993) Cryptoendolithic algae of hot semi-arid lands and deserts. J Phycol 29:133–139CrossRefGoogle Scholar
  8. Büdel B, Wessels DCJ (1991) Rock inhabiting blue-green algae/cyanobacteria from hot arid regions. Algol Stud 64:385–398Google Scholar
  9. Büdel B, Weber B, Kühl M, Pfanz H, Sültemeyer D, Wessels D (2004) Reshaping of sandstone surfaces by cryptoendolithic cyanobacteria: bioalkalization causes chemical weathering in arid landscapes. Geobiology 2:261–268CrossRefGoogle Scholar
  10. Carson JL, Brown RM (1978) Studies of Hawaiian freshwater and soil algae 2. Algal colonization and succession on a dated volcanic substrate. J Phycol 14:171–178CrossRefGoogle Scholar
  11. Cockell CS, Olsson-Francis K, Knowles F, Kelly L, Herrera A, Thorsteinsson T, Marteinsson V (2009a) Bacteria in weathered basaltic glass, Iceland. Geomicrobiol J 26:491–507CrossRefGoogle Scholar
  12. Cockell CS, Olsson-Francis K, Herrera A, Meunier A (2009b) Alteration textures in terrestrial volcanic glass and the associated bacterial community. Geobiology 7:50–65PubMedCrossRefGoogle Scholar
  13. Cockell CS, Kelly LC, McGarvie D, Marteinsson V, 476 Thorsteinsson T, Bailey M, Whiteley A, James P, 477 Piceno YM, Anderson GL, DeSantis TZ, Daly R 478 (2010) Microbial diversity of weathered terrestrial 479 volcanic rocks. FEMS Microbiol Rev (in press)Google Scholar
  14. Dahlgren R, Shoji S, Nanzyo M (1993) Mineralogical characteristics of volcanic ash soils. In: Shoji S, Nanzyo M (eds) Volcanic Ash soils genesis, properties, and utilization. Elsevier, Amsterdam, pp 101–143CrossRefGoogle Scholar
  15. Daughney CJ, Rioux J-P, Fortin D, Pichler T (2004) Laboratory investigation of the role of bacteria in the weathering of basalt near deep sea hydrothermal vents. Geomicrobiol J 21:21–31CrossRefGoogle Scholar
  16. de la Torre JR, Goebel BM, Friedmann EI, Pace NR (2003) Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol 69:3858–3867PubMedCrossRefGoogle Scholar
  17. del Pino JSN, Almenar ID, Rivero FN, Rodriguez-Rodriguez A, Rodriguez CA, Herrera CA, Garcia JAG, Hernandez JLM (2007) Temporal evolution of organic carbon and nitrogen forms in volcanic soils under broom scrub affected by a wildfire. Sci Total Environ 378:245–252CrossRefGoogle Scholar
  18. Dessert C, Dupré B, François LM, Schott J, Gaillardet J, Chakrapani GJ, Bajpai S (2001) Erosion of Deccan Traps determined by river geochemistry: impact on the global climate and the 87Sr/86Sr ratio of seawater. Earth Planet Sci Lett 188:459–474CrossRefGoogle Scholar
  19. Dessert C, Dupré B, Gaillardet J, François LM, Allègre CJ (2003) Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chem Geol 202:257–273CrossRefGoogle Scholar
  20. Dunfield KE, King GM (2005) Analysis of the distribution and diversity in recent Hawaiian volcanic deposits of a putative carbon monoxide dehydrogenase large subunit gene. Environ Microbiol 7:1405–1412PubMedCrossRefGoogle Scholar
  21. Edwards KJ, Rogers DR, Wirsen CO, McCollom TM (2003) Isolation and characterisation of novel psychrophilic, neutrophilic, Fe-oxidising, chemolithoautotrophic α- and γ- Proteobacteria from the deep sea. Appl Environ Microbiol 69:2906–2913PubMedCrossRefGoogle Scholar
  22. Eppard M, Krumbein W, Koch C, Rhiel E, Staley J, Stackebrandt E (1996) Morphological, physiological, and molecular characterization of actinomycetes isolated from dry soil, rocks, and monument surfaces. Arch Microbiol 166:12–22PubMedCrossRefGoogle Scholar
  23. Fermani P, Mataloni G, Van de Vijver B (2007) Soil microalgal communities on an Antarctic active volcano (Deception Iceland, South Shetlands). Polar Biol 30:1381–1393CrossRefGoogle Scholar
  24. Francis P (1993) Volcanoes: a planetary perspective. Oxford University Press, Oxford, p 2Google Scholar
  25. Friedmann EI (1980) Endolithic microbial life in hot and cold deserts. Orig Life Evol Biosph 10:223–235CrossRefGoogle Scholar
  26. Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053PubMedCrossRefGoogle Scholar
  27. Gaylarde PM, Jungblut A, Gaylarde CC, Neilan BA (2006) Endolithic phototrophs from an active geothermal region in New Zealand. Geomicrobiol J 23:579–587CrossRefGoogle Scholar
  28. Gíslason SR, Eugster HP (1987) Meteoric water-basalt interactions I A laboratory study. Geochim Cosmochim Acta 51:2827–2840CrossRefGoogle Scholar
  29. Gomez-Alvarez V, King GM, Nüsslein K (2007) Comparative bacterial in recent Hawaiian volcanic deposits of different ages. FEMS Microbiol Ecol 60:60–73PubMedCrossRefGoogle Scholar
  30. Gross W, Küver J, Tischendorf G, Bouchaala N, Büsch W (1998) Cryptoendolithic growth of the red alga Galdieria sulphuraria in volcanic areas. Eur J Phycol 33:25–31CrossRefGoogle Scholar
  31. Gundlapally SR, Garcia-Pichel F (2006) The community and phylogenetic diversity of biological soil crusts in the Colorado Plateau studied by molecular fingerprinting and intensive cultivation. Microb Ecol 52:345–357PubMedCrossRefGoogle Scholar
  32. Halvorson JJ, Smith JL, Franz EH (1991) Lupine influence on soil carbon, nitrogen and microbial activity in developing ecosystems at Mount St. Helens. Oecologia 87:162–170CrossRefGoogle Scholar
  33. Halvorson JJ, Franz EH, Smith JL, Black RA (1992) Nitrogenase activity, nitrogen fixation, and nitrogen inputs by lupines at Mount St. Helens. Ecology 73:87–98CrossRefGoogle Scholar
  34. Herrera A, Cockell CS, Self S, Blaxter M, Reitner J, Arp G, Dröse W, Tindle A (2008) Bacterial colonization and weathering of terrestrial obsidian rock in Iceland. Geomicrobiol J 25:25–37CrossRefGoogle Scholar
  35. Herrera A, Cockell CS, Self S, Blaxter M, Reitner J, Thorsteinsson T, Arp G, Dröse W, Tindle A (2009) A cryptoendolithic community in volcanic glass. Astrobiology 9:369–381PubMedCrossRefGoogle Scholar
  36. Hopkins DW, Badalucco L, English LC, Meli SM, Chudek JA, Ioppolo A (2007) Plant litter decomposition and microbial characteristics in volcanic soils (Mt Etna, Sicily) at different stages of development. Biol Fertil Soils 43:461–469CrossRefGoogle Scholar
  37. Ibekwe AM, Kennedy AC, Halvorson JJ, Yang CH (2007) Characterization of developing microbial communities in Mount St. Helens pyroclastic substrate. Soil Biol Biochem 39:2496–2507CrossRefGoogle Scholar
  38. Jezberova J (2006) Phenotypic diversity and phylogeny of picocyanobacteria in mesotrophic and eutrophic freshwater reservoirs investigated by a cultivation-dependent polyphasic approach. PhD thesis, University of South Bohemia, Czech RepublicGoogle Scholar
  39. Katana A, Kwiatowski JM, Spalik K, Zakrys B, Szalacha E, Szymanska H (2001) Phylogenetic position of Koliella (Chlorophyta) as inferred from nuclear and chloroplast SSU rDNA. J Phycol 37:443–451CrossRefGoogle Scholar
  40. Kelly L, Cockell CS, Piceno YM, Anderson G, Thorsteinsson T, Marteinsson V (2010) Bacterial Diversity of Weathered Terrestrial Icelandic Volcanic Glasses. Microbial Ecology (in press)Google Scholar
  41. Kimble JM, Ping CL, Sumner ME, Wilding LP (2000) Andosols. In: Sumner ME (ed) Handbook of soil science. CRC Press, Boca Raton, pp E209–E224Google Scholar
  42. King GM (2003) Contributions of atmospheric CO and hydrogen uptake to microbial dynamics on recent Hawaiian volcanic deposits. Appl Environ Microbiol 69:4067–4075PubMedCrossRefGoogle Scholar
  43. Le Bas MJ, Le Maitre RW, Woolley AR (1992) The construction of the total alkali-silica chemical classification of volcanic rocks. Mineral Petrol 46:1–22CrossRefGoogle Scholar
  44. Lukito HP, Kouno K, Ando T (1998) Phosphorus requirements of microbial biomass in a regosol and an andosol. Soil Biol Biochem 30:865–872CrossRefGoogle Scholar
  45. Lysnes K, Thorseth IH, Steinbu BO, Øvreås L, Torsvik T, Pedersen RB (2004) Microbial community diversity in seafloor basalt from the Arctic spreading ridges. FEMS Microbiol Ecol 50:213–230PubMedCrossRefGoogle Scholar
  46. Magonthier M-C, Petit J-C, Dran J-C (1992) Rhyolitic glasses as natural analogues of nuclear waste glasses: behaviour of an Icelandic glass upon natural aqueous corrosion. Appl Geochem 7(Suppl. 1):83–93Google Scholar
  47. Murray AE, Grzymski JJ (2007) Diversity and genomics of Antarctic marine micro-organisms. Philos Trans R Soc Lond B 362:2259–2271CrossRefGoogle Scholar
  48. Nagy ML, Perez A, Garcia-Pichel F (2005) The prokaryotic diversity of biological crusts in the Sonoran desert (Organ Pipe Cactus National Monument, AZ). FEMS Microbiol Ecol 54:233–245PubMedCrossRefGoogle Scholar
  49. Nanba K, King GM, Dunfield K (2004) Analysis of facultative lithotroph distribution and diversity of volcanic deposits by use of the large subunit of Ribulose 1, 5-bisphosphate carboxylase/oxygenase. Appl Environ Microbiol 70:2245–2253PubMedCrossRefGoogle Scholar
  50. Nemergut DR, Anderson SP, Cleveland CC, Martin AP, Miller AE, Seimon A, Schmidt SK (2007) Microbial community succession in an unvegetated, recently deglaciated soil. Microbiol Ecol 53:110–122CrossRefGoogle Scholar
  51. Nogales B, Moore ER, Llobet-Brossa E, Rossello-Mora R, Amann R, Timmis KN (2001) Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil. Appl Environ Microbiol 67:1874–1884PubMedCrossRefGoogle Scholar
  52. Nüsslein K, Tiedje JM (1998) Characterization of the dominant and rare members of a young Hawaiian soil bacterial community with small-subunit ribosomal DNA amplified from DNA fractionated on the basis of its guanine and cytosine composition. Appl Environ Microbiol 64:1283–1289PubMedGoogle Scholar
  53. O’Sullivan LA, Fuller KE, Thomas EM, Turley CM, Fry JC, Weightman AJ (2004) Distribution and culturability of the uncultivated “AGG58 cluster” of the Bacteroidetes phylum in aquatic environments. FEMS Microbiol Ecol 47:359–370PubMedCrossRefGoogle Scholar
  54. Oelkers EH, Gíslason SR (2001) The mechanism, rates, and consequences of basaltic glass dissolution: I An experimental study of the dissolution rates of basalatic glass as a function of aqueous Al, Si and oxalic acid concentration at 25°C and pH 3 and 11. Geochim Cosmochim Acta 65:3671–3681CrossRefGoogle Scholar
  55. Omelon CR, Pollard WH, Ferris FG (2006) Chemical and ultrastructural characterization of high arctic cryptoendolithic habitats. Geomicrobiol J 23:189–200CrossRefGoogle Scholar
  56. Orcutt B, Bailey B, Staudigel H, Tebo BM, Edwards KJ (2009) An interlaboratory comparison of 16S-rRNA gene-based terminal restriction fragment length polymorphism and sequencing methods for assessing microbial diversity of seafloor basalts. Environ Microbiol 11:1728–1738PubMedCrossRefGoogle Scholar
  57. Oskarsson H, Arnalds O, Gudmundsson J, Gudbergsson G (2004) Organic carbon in Icelandic Andosols: geographical variation and impact of erosion. Catena 56:225–238CrossRefGoogle Scholar
  58. Parfitt RL, Kimble JM (1989) Conditions for formation of allophane in soils. Soil Sci Soc Am J 53:971–977CrossRefGoogle Scholar
  59. Petit J-C (1992) Natural analogues for the design and performance assessment of radioactive waste forms: a review. J Geochem Explor 46:1–33CrossRefGoogle Scholar
  60. Pierson BK, Mitchell HK, Ruff-Roberts AL (1993) Chloroflexus aurantiacus and ultraviolet radiation: implications for archean shallow-water stromatolites. Orig Life Evol Biosph 23:243–260CrossRefGoogle Scholar
  61. Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Funct Plant Biol 28:897–906CrossRefGoogle Scholar
  62. Saiz-Jimenez C, Garcia-Rowe J, Garcia del Cura MA, Ortega-Calvo JJ, Roekens E, Van Grieken R (1990) Endolithic cyanobacteria in Maastricht Limestone. Sci Total Environ 94:209–220CrossRefGoogle Scholar
  63. Santelli CM, Orcutt BN, Banning E, Bach W, Moyer CL, Sogin ML, Staudigel H, Edwards KJ (2008) Abundance and diversity of microbial life in ocean crust. Nature 453:643–657CrossRefGoogle Scholar
  64. Schminke HU (2004) Volcanism. Springer, HeidelbergCrossRefGoogle Scholar
  65. Shivaji S, Reddy GSN, Aduri RP, Kutty R, Ravenschlag K (2004) Bacterial diversity of a soil sample from Schirmacher Oasis, Antarctica. Cell Mol Biol 50:525–536PubMedGoogle Scholar
  66. Staudigel H, Chastain RA, Yayanos A, Boucier W (1995) Biologically mediated dissolution of glass. Chem Geol 126:147–154CrossRefGoogle Scholar
  67. Staudigel H, Yayanos A, Chastain R, Davies G, Th Verdurmen EA, Schiffman P, Boucier R, de Baar H (1998) Biologically mediated dissolution of volcanic glass in seawater. Earth Planet Sci Lett 164:233–244CrossRefGoogle Scholar
  68. Staudigel H, Furnes H, Banerjee NR, Dilek Y, Muehlenbachs K (2006) Microbes and volcanoes: a tale from the oceans, ophiolites, and greenstone belts. GSA Today 16:4–102CrossRefGoogle Scholar
  69. Stefánsson A, Gíslason SR (2001) Chemical weathering of basalts, SW Iceland Effect of rock crystallinity and secondary minerals on chemical fluxes to the ocean. Am J Sci 301:513–556Google Scholar
  70. Stroncik NA, Schminke HU (2001) Evolution of palagonite: crystallization, chemical changes, and element budget. Geochem Geophys Geosyst 2:1017. doi:10.1029/2000GC000102, 2001CrossRefGoogle Scholar
  71. Tebo BM, Johnson HA, McCarthy JK, Templeton AS (2005) Geomicrobiology of manganese(II) oxidation. Trends Microbiol 13:421–428PubMedCrossRefGoogle Scholar
  72. Templeton AS, Staudigel H, Tebo BM (2005) Diverse Mn(II)-oxidising bacteria isolated from submarine basalts at Loihi Seamount. Geomicrobiol J 22:127–139CrossRefGoogle Scholar
  73. Tester PA, Varnam SM, Culver ME, Eslinger DL, Stumpf RP, Swift RN, Yungel JK, Black MD, Litaker RW (2003) Airborne detection of ecosystem responses to an extreme event: phytoplankton displacement and abundance after hurricane induced flooding in the Pamlico-Albemarle Sound system, North Carolina. Estuaries 26:1353–1364CrossRefGoogle Scholar
  74. Thorseth IH, Furnes H, Tumyr O (1991) A textural and chemical study of Icelandic palagonite of varied composition and its bearing on the mechanism of the glass-palagonite transformation. Geochim Cosmochim Acta 55:731–749CrossRefGoogle Scholar
  75. Thorseth IH, Torsvik T, Torsvik V, Torsvik V, Daae FL, Pedersen RB (2001) Diversity of life in ocean floor basalt. Earth Planet Sci Lett 194:31–37CrossRefGoogle Scholar
  76. Thorseth IH, Pedersen RB, Christie DM (2003) Microbial alteration of 0-30-Ma seafloor and sub-seafloor basaltic glasses from the Australian Antarctic Discordance. Earth Planet Sci Lett 215:237–247CrossRefGoogle Scholar
  77. Torsvik T, Furnes H, Muehlenbachs K, Thorseth IH, Tumyr O (1998) Evidence for microbial activity at the glass-alteration interface in oceanic basalts. Earth Planet Sci Lett 162:165–176CrossRefGoogle Scholar
  78. Turmel M, Ehara M, Otis C, Lemieux C (2002) Phylogenetic relationships among streptophytes as inferred from chloroplast small and large subunit rRNA gene sequences. J Phycol 38:364–375CrossRefGoogle Scholar
  79. Turner S (1997) Molecular systematics of oxygenic photosynthetic bacteria. Plant Syst Evol 11:13–52, SupplCrossRefGoogle Scholar
  80. Ustinova I, Krienitz L, Huss VAR (2001) Closteriopsis acicularis (G.M. Smith) Belcher et Swale us a fusiform alga closely related to Chlorella kessleri Fott et Nováková (Chlorophyta, Terbouxiophyceae). Eur J Phycol 36:341–351CrossRefGoogle Scholar
  81. Van Thienen P, Benzerara K, Brueur D, Gillmann C, Labrosse S, Lognonne P, Spohn T (2007) Water, life and planetary habitability. Space Sci Rev 129:167–203CrossRefGoogle Scholar
  82. Walker JJ, Pace NR (2007) Phylogenetic composition of rocky mountain endolithic microbial ecosystems. Appl Environ Microbiol 73:3497–3504PubMedCrossRefGoogle Scholar
  83. Walker JJ, Spear JR, Pace NR (2005) Geobiology of a microbial endolithic community in the Yellowstone geothermal environment. Nature 434:1011–1014PubMedCrossRefGoogle Scholar
  84. Walton AW (2008) Microtubules in basalt glass from Hawaii Scientific Driling Project #2 phase 1 core and Hilina slope, Hawaii: evidence of the occurrence and behavior of endolithic microorganisms. Geobiology 6:351–364PubMedCrossRefGoogle Scholar
  85. Weber B, Wessels DCJ, Büdel B (1996) Biology and ecology of cryptoendolithic cyanobacteria of a sandstone outcrop in the Northern Province, South Africa. Algol Stud 83:565–579Google Scholar
  86. Wolff-Boenisch D, Gíslason SR, Oelkers EH, Putnis CV (2004) The dissolution rates of natural glasses as a function of their composition at pH 4 and 10, and temperatures from 25 to 74°C. Geochim Cosmochim Acta 68:4843–4858CrossRefGoogle Scholar
  87. Wolff-Boenisch D, Gíslason SR, Oelkers EH (2006) The effect of crystallinity on dissolution rates and CO2 consumption capacity of silicates. Geochim Cosmochim Acta 70:858–870CrossRefGoogle Scholar
  88. Wu X, Xi WY, Ye WJ, Yang H (2007) Bacterial community composition of a shallow hypertrophic freshwater lake in China. FEMS Microbiol Ecol 61:85–96PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • Charles S. Cockell
    • 1
  • Laura Kelly
    • 1
  • Stephen Summers
    • 1
  1. 1.Geomicrobiology Research Group, CEPSAROpen UniversityMilton KeynesUK

Personalised recommendations