Psychrophilic Enzymes: Cool Responses to Chilly Problems

  • Frédéric Roulling
  • Florence Piette
  • Alexandre Cipolla
  • Caroline Struvay
  • Georges Feller


Most of the biotopes on Earth are permanently exposed to low temperatures. This includes the Antarctic continent, the Arctic ice floe, the permafrost, the mountain and glacier regions, and the deep-sea waters, the latter covering 70% of the planet surface. If a psychrophile is defined as an organism living permanently at temperatures close to the freezing point of water, in thermal equilibrium with the medium, this definition encompasses a large range of species from Bacteria, Archaea, and Eukaryotes. This aspect underlines that psychrophiles are numerous, taxonomically diverse, and have a widespread distribution. In these organisms, low temperatures are essential for sustained cell metabolism. Some psychrophilic bacteria grown at 4°C have doubling times close to that of Escherichia coliat 37°C. Such deep adaptation of course requires a vast array of metabolic and structural adjustments at nearly all organization levels of the cell, which begins to be understood thanks...


Thermophilic Protein Thermophilic Enzyme Psychrophilic Enzyme Mesophilic Enzyme Psychrophilic Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Research at the author’s laboratory was supported by the European Union, the Région wallonne (Belgium), the Fonds National de la Recherche Scientifique (Belgium), and the University of Liège. The facilities offered by the Institut Polaire Français are also acknowledged.


  1. Aghajari N, Feller G, Gerday C, Haser R (1998a) Crystal structures of the psychrophilic α-amylase from Alteromonas haloplanctis in its native form and complexed with an inhibitor. Protein Sci 7:564–572PubMedCrossRefGoogle Scholar
  2. Aghajari N, Feller G, Gerday C, Haser R (1998b) Structures of the psychrophilic Alteromonas haloplanctis α-amylase give insights into cold adaptation at a molecular level. Structure 6:1503–1516PubMedCrossRefGoogle Scholar
  3. Aghajari N, Roth M, Haser R (2002) Crystallographic evidence of a transglycosylation reaction: ternary complexes of a psychrophilic alpha-amylase. Biochemistry 41:4273–4280PubMedCrossRefGoogle Scholar
  4. Aghajari N, Van Petegem F, Villeret V, Chessa JP, Gerday C, Haser R, Van Beeumen J (2003) Crystal structures of a psychrophilic metalloprotease reveal new insights into catalysis by cold-adapted proteases. Proteins 50:636–647PubMedCrossRefGoogle Scholar
  5. Bae E, Phillips GN Jr (2004) Structures and analysis of highly homologous psychrophilic, mesophilic, and thermophilic adenylate kinases. J Biol Chem 279:28202–28208PubMedCrossRefGoogle Scholar
  6. Bae E, Phillips GN Jr (2006) Roles of static and dynamic domains in stability and catalysis of adenylate kinase. Proc Natl Acad Sci USA 103:2132–2137PubMedCrossRefGoogle Scholar
  7. Bell GS, Russell RJ, Connaris H, Hough DW, Danson MJ, Taylor GL (2002) Stepwise adaptations of citrate synthase to survival at life’s extremes. From psychrophile to hyperthermophile. Eur J Biochem 269:6250–6260PubMedCrossRefGoogle Scholar
  8. Benkovic SJ, Hammes GG, Hammes-Schiffer S (2008) Free-energy landscape of enzyme catalysis. Biochemistry 47:3317–3321PubMedCrossRefGoogle Scholar
  9. Bjelic S, Brandsdal BO, Aqvist J (2008) Cold adaptation of enzyme reaction rates. Biochemistry 47:10049–10057PubMedCrossRefGoogle Scholar
  10. Brandsdal BO, Smalas AO, Aqvist J (2001) Electrostatic effects play a central role in cold adaptation of trypsin. FEBS Lett 499:171–175PubMedCrossRefGoogle Scholar
  11. Casanueva A, Tuffin M, Cary C, Cowan DA (2010) Molecular adaptations to psychrophily: the impact of ‘omic’ technologies. Trends Microbiol 18:374–381PubMedCrossRefGoogle Scholar
  12. Cherry JR, Lamsa MH, Schneider P, Vind J, Svendsen A, Jones A, Pedersen AH (1999) Directed evolution of a fungal peroxidase. Nat Biotechnol 17:379–384PubMedCrossRefGoogle Scholar
  13. Chiuri R, Maiorano G, Rizzello A, del Mercato LL, Cingolani R, Rinaldi R, Maffia M, Pompa PP (2009) Exploring local flexibility/rigidity in psychrophilic and mesophilic carbonic anhydrases. Biophys J 96:1586–1596PubMedCrossRefGoogle Scholar
  14. Claverie P, Vigano C, Ruysschaert JM, Gerday C, Feller G (2003) The precursor of a psychrophilic alpha-amylase: structural characterization and insights into cold adaptation. Biochim Biophys Acta 1649: 119–122PubMedCrossRefGoogle Scholar
  15. Collins T, Meuwis MA, Gerday C, Feller G (2003) Activity, stability and flexibility in glycosidases adapted to extreme thermal environments. J Mol Biol 328:419–428PubMedCrossRefGoogle Scholar
  16. D’Amico S, Gerday C, Feller G (2001) Structural determinants of cold adaptation and stability in a large protein. J Biol Chem 276:25791–25796PubMedCrossRefGoogle Scholar
  17. D’Amico S, Claverie P, Collins T, Georlette D, Gratia E, Hoyoux A, Meuwis MA, Feller G, Gerday C (2002a) Molecular basis of cold adaptation. Philos Trans R Soc Lond B Biol Sci 357:917–925PubMedCrossRefGoogle Scholar
  18. D’Amico S, Gerday C, Feller G (2002b) Dual effects of an extra disulfide bond on the activity and stability of a cold-adapted alpha-amylase. J Biol Chem 277:46110–46115PubMedCrossRefGoogle Scholar
  19. D’Amico S, Gerday C, Feller G (2003a) Temperature adaptation of proteins: engineering mesophilic-like activity and stability in a cold-adapted alpha-amylase. J Mol Biol 332:981–988PubMedCrossRefGoogle Scholar
  20. D’Amico S, Marx JC, Gerday C, Feller G (2003b) Activity-stability relationships in extremophilic enzymes. J Biol Chem 278:7891–7896PubMedCrossRefGoogle Scholar
  21. D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006a) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389PubMedCrossRefGoogle Scholar
  22. D’Amico S, Sohier JS, Feller G (2006b) Kinetics and energetics of ligand binding determined by microcalorimetry: insights into active site mobility in a psychrophilic alpha-amylase. J Mol Biol 358:1296–1304PubMedCrossRefGoogle Scholar
  23. De Vos D, Collins T, Nerinckx W, Savvides SN, Claeyssens M, Gerday C, Feller G, Van Beeumen J (2006) Oligosaccharide binding in family 8 glycosidases: crystal structures of active-site mutants of the beta-1, 4-xylanase pXyl from Pseudoaltermonas haloplanktis TAH3a in complex with substrate and product. Biochemistry 45:4797–4807PubMedCrossRefGoogle Scholar
  24. Dinner AR, Sali A, Smith LJ, Dobson CM, Karplus M (2000) Understanding protein folding via free-energy surfaces from theory and experiment. Trends Biochem Sci 25:331–339PubMedCrossRefGoogle Scholar
  25. Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208PubMedCrossRefGoogle Scholar
  26. Feller G, D’Amico D, Gerday C (1999) Thermodynamic stability of a cold-active α-amylase from the Antarctic bacterium Alteromonas haloplanctis. Biochemistry 38:4613–4619PubMedCrossRefGoogle Scholar
  27. Fields PA, Somero GN (1998) Hot spots in cold adaptation: localized increases in conformational flexibility in lactate dehydrogenase A(4) orthologs of Antarctic notothenioid fishes. Proc Natl Acad Sci USA 95:11476–11481PubMedCrossRefGoogle Scholar
  28. Garsoux G, Lamotte J, Gerday C, Feller G (2004) Kinetic and structural optimization to catalysis at low temperatures in a psychrophilic cellulase from the Antarctic bacterium Pseudoalteromonas haloplanktis. Biochem J 384:247–253PubMedCrossRefGoogle Scholar
  29. Georlette D, Damien B, Blaise V, Depiereux E, Uversky VN, Gerday C, Feller G (2003) Structural and functional adaptations to extreme temperatures in psychrophilic, mesophilic, and thermophilic DNA ligases. J Biol Chem 278:37015–37023PubMedCrossRefGoogle Scholar
  30. Gerday C, Glansdorff N (2007) Physiology and biochemistry of extremophiles. ASM Press, WashingtonGoogle Scholar
  31. Gianese G, Bossa F, Pascarella S (2002) Comparative structural analysis of psychrophilic and meso- and thermophilic enzymes. Proteins 47:236–249PubMedCrossRefGoogle Scholar
  32. Giver L, Gershenson A, Freskgard PO, Arnold FH (1998) Directed evolution of a thermostable esterase. Proc Natl Acad Sci USA 95:12809–12813PubMedCrossRefGoogle Scholar
  33. Gorfe AA, Brandsdal BO, Leiros HK, Helland R, Smalas AO (2000) Electrostatics of mesophilic and psychrophilic trypsin isoenzymes: qualitative evaluation of electrostatic differences at the substrate binding site. Proteins 40:207–217PubMedCrossRefGoogle Scholar
  34. Kim SY, Hwang KY, Kim SH, Sung HC, Han YS, Cho YJ (1999) Structural basis for cold adaptation. Sequence, biochemical properties, and crystal structure of malate dehydrogenase from a psychrophile Aquaspirillium arcticum. J Biol Chem 274:11761–11767PubMedCrossRefGoogle Scholar
  35. Kumar S, Nussinov R (2004) Experiment-guided thermodynamic simulations on reversible two-state proteins: implications for protein thermostability. Biophys Chem 111:235–246PubMedCrossRefGoogle Scholar
  36. Kumar S, Ma B, Tsai CJ, Sinha N, Nussinov R (2000) Folding and binding cascades: dynamic landscapes and population shifts. Protein Sci 9:10–19PubMedCrossRefGoogle Scholar
  37. Leiros I, Moe E, Lanes O, Smalas AO, Willassen NP (2003) The structure of uracil-DNA glycosylase from Atlantic cod (Gadus morhua) reveals cold-adaptation features. Acta Crystallogr D Biol Crystallogr 59:1357–1365PubMedCrossRefGoogle Scholar
  38. Lonhienne T, Gerday C, Feller G (2000) Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility. Biochim Biophys Acta 1543:1–10PubMedCrossRefGoogle Scholar
  39. Lonhienne T, Zoidakis J, Vorgias CE, Feller G, Gerday C, Bouriotis V (2001) Modular structure, local flexibility and cold-activity of a novel chitobiase from a psychrophilic Antarctic bacterium. J Mol Biol 310:291–297PubMedCrossRefGoogle Scholar
  40. Ma B, Kumar S, Tsai CJ, Hu Z, Nussinov R (2000) Transition-state ensemble in enzyme catalysis: possibility, reality, or necessity? J Theor Biol 203:383–397PubMedCrossRefGoogle Scholar
  41. Makhatadze GI, Privalov PL (1995) Energetics of protein structure. Adv Protein Chem 47:307–425PubMedCrossRefGoogle Scholar
  42. Mandrich L, Pezzullo M, Del Vecchio P, Barone G, Rossi M, Manco G (2004) Analysis of thermal adaptation in the HSL enzyme family. J Mol Biol 335:357–369PubMedCrossRefGoogle Scholar
  43. Margesin R, Schinner F, Marx JC, Gerday C (2008) Psychrophiles, from biodiversity to biotechnology. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  44. Privalov PL (1990) Cold denaturation of proteins. Crit Rev Biochem Mol Biol 25:281–305PubMedCrossRefGoogle Scholar
  45. Qian M, Haser R, Buisson G, Duee E, Payan F (1994) The active center of a mammalian alpha-amylase. Structure of the complex of a pancreatic alpha-amylase with a carbohydrate inhibitor refined to 2.2-Å resolution. Biochemistry 33:6284–6294PubMedCrossRefGoogle Scholar
  46. Russell NJ (2000) Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles 4:83–90PubMedCrossRefGoogle Scholar
  47. Russell RJ, Gerike U, Danson MJ, Hough DW, Taylor GL (1998) Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium. Structure 6:351–361PubMedCrossRefGoogle Scholar
  48. Schultz CP (2000) Illuminating folding intermediates. Nat Struct Biol 7:7–10PubMedCrossRefGoogle Scholar
  49. Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433PubMedCrossRefGoogle Scholar
  50. Siddiqui KS, Feller G, D’Amico S, Gerday C, Giaquinto L, Cavicchioli R (2005) The active site is the least stable structure in the unfolding pathway of a multidomain cold-adapted alpha-amylase. J Bacteriol 187:6197–6205PubMedCrossRefGoogle Scholar
  51. Skalova T, Dohnalek J, Spiwok V, Lipovova P, Vondrackova E, Petrokova H, Duskova J, Strnad H, Kralova B, Hasek J (2005) Cold-active beta-galactosidase from Arthrobacter sp. C2-2 forms compact 660 kDa hexamers: crystal structure at 1.9Å resolution. J Mol Biol 353:282–294PubMedCrossRefGoogle Scholar
  52. Smalas AO, Leiros HK, Os V, Willassen NP (2000) Cold adapted enzymes. Biotechnol Annu Rev 6:1–57PubMedCrossRefGoogle Scholar
  53. Somero GN (1995) Proteins and temperature. Annu Rev Physiol 57:43–68PubMedCrossRefGoogle Scholar
  54. Suzuki Y, Takano K, Kanaya S (2005) Stabilities and activities of the N- and C-domains of FKBP22 from a psychrotrophic bacterium overproduced in Escherichia coli. FEBS J 272:632–642PubMedCrossRefGoogle Scholar
  55. Tehei M, Franzetti B, Madern D, Ginzburg M, Ginzburg BZ, Giudici-Orticoni MT, Bruschi M, Zaccai G (2004) Adaptation to extreme environments: macromolecular dynamics in bacteria compared in vivo by neutron scattering. EMBO Rep 5:66–70PubMedCrossRefGoogle Scholar
  56. Tsai CJ, Ma B, Nussinov R (1999) Folding and binding cascades: shifts in energy landscapes. Proc Natl Acad Sci USA 96:9970–9972PubMedCrossRefGoogle Scholar
  57. Tsigos I, Velonia K, Smonou I, Bouriotis V (1998) Purification and characterization of an alcohol dehydrogenase from the Antarctic psychrophile Moraxella sp. TAE123. Eur J Biochem 254:356–362PubMedCrossRefGoogle Scholar
  58. Vetriani C, Maeder DL, Tolliday N, Yip KS, Stillman TJ, Britton KL, Rice DW, Klump HH, Robb FT (1998) Protein thermostability above 100°C: a key role for ionic interactions. Proc Natl Acad Sci USA 95:12300–12305PubMedCrossRefGoogle Scholar
  59. Violot S, Aghajari N, Czjzek M, Feller G, Sonan GK, Gouet P, Gerday C, Haser R, Receveur-Brechot V (2005) Structure of a full length psychrophilic cellulase from Pseudoalteromonas haloplanktis revealed by X-ray diffraction and small angle X-ray scattering. J Mol Biol 348:1211–1224PubMedCrossRefGoogle Scholar
  60. Wintrode PL, Arnold FH (2000) Temperature adaptation of enzymes: lessons from laboratory evolution. Adv Protein Chem 55:161–225PubMedCrossRefGoogle Scholar
  61. Xie BB, Bian F, Chen XL, He HL, Guo J, Gao X, Zeng YX, Chen B, Zhou BC, Zhang YZ (2009) Cold adaptation of zinc metalloproteases in the thermolysin family from deep sea and arctic sea ice bacteria revealed by catalytic and structural properties and molecular dynamics: new insights into relationship between conformational flexibility and hydrogen bonding. J Biol Chem 284:9257–9269PubMedCrossRefGoogle Scholar
  62. Xu Y, Feller G, Gerday C, Glansdorff N (2003) Metabolic enzymes from psychrophilic bacteria: challenge of adaptation to low temperatures in ornithine carbamoyltransferase from Moritella abyssi. J Bacteriol 185:2161–2168PubMedCrossRefGoogle Scholar
  63. Yip KS, Stillman TJ, Britton KL, Artymiuk PJ, Baker PJ, Sedelnikova SE, Engel PC, Pasquo A, Chiaraluce R, Consalvi V (1995) The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures. Structure 3:1147–1158PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • Frédéric Roulling
    • 1
  • Florence Piette
    • 1
  • Alexandre Cipolla
    • 1
  • Caroline Struvay
    • 1
  • Georges Feller
    • 1
  1. 1.Laboratory of Biochemistry, Center for Protein EngineeringInstitute of Chemistry B6, University of LiègeLiège-Sart TilmanBelgium

Personalised recommendations