Skip to main content

Psychrophiles: Genetics, Genomics, Evolution

  • Reference work entry
Book cover Extremophiles Handbook

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen MA et al (2009) The genome sequence of the psychrophilic archaeon, Methanococcoides burtonii: the role of genome evolution in cold adaptation. ISME J 3(9):1012–1035

    Article  PubMed  CAS  Google Scholar 

  • Bada JL, Lazcano A (2002) Some like it hot, but not the first biomolecules. Science 296:1983–1982

    Article  Google Scholar 

  • Bakermans C et al (2006) Psychrobacter cryohalolentis sp. nov. and Psychrobacter arcticus sp. nov., isolated from Siberian permafrost. Int J Syst Evol Microbiol 56(6):1285–1291

    Article  PubMed  CAS  Google Scholar 

  • Bakermans C, Tollaksen SL, Giometti CS, Wilkerson C, Tiedje JM, Thomashow MF (2007) Proteomic analysis of Psychrobacter cryohalolentis K5 during growth at subzero temperatures. Extremophiles 11(2):343–354

    Article  PubMed  CAS  Google Scholar 

  • Berger F, Morellet N, Menu F, Potier P (1996) Cold shock and cold acclimation proteins in the psychrotrophic bacterium Arthrobacter globiformis SI55. J Bacteriol 178(11):2999–3007

    PubMed  CAS  Google Scholar 

  • Bergholz PW, Bakermans C, Tiedje JM (2009) Psychrobacter arcticus 273–4 uses resource efficiency and molecular motion adaptations for subzero temperature growth. J Bacteriol 191(7):2340

    Article  PubMed  CAS  Google Scholar 

  • Burg D, Lauro FM, Williams T, Raftery M, Guilhaus M, Cavicchioli R (2010) Analyzing the hydrophobic proteome of the Antarctic archaeon Methanococcoides burtonii using differential solubility fractionation. J Proteome Res 9(2):664–676.

    Article  PubMed  CAS  Google Scholar 

  • Campanaro S, Williams TJ, De Francisci D, Treu L, Lauro FM, Cavicchioli R (2010) Temperature-dependent global gene expression in the Antarctic archaeon, Methanococcoides burtonii. Environmental Microbiology (in press, accepted Sept 20)

    Google Scholar 

  • Cavicchioli R (2006) Cold adapted archaea. Nat Rev Microbiol 4:331–343

    Article  PubMed  CAS  Google Scholar 

  • Cavicchioli R (2007) Antarctic metagenomics. Microbiol Austr 28:98–103

    Google Scholar 

  • Dalluge JJ, Hamamoto T, Horikoshi K, Morita RY, Stetter KO, McCloskey JA (1997) Posttranscriptional modification of tRNA in psychrophilic bacteria. J Bacteriol 179:1918–1923

    PubMed  CAS  Google Scholar 

  • Duchaud E et al (2007) Complete genome sequence of the fish pathogen Flavobacterium psychrophilum. Nat Biotechnol 25(7):763–769

    Article  PubMed  CAS  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nature Rev Microbiol 1:200–208

    Article  CAS  Google Scholar 

  • Franzmann PD et al (1997) Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antarctica. Int J Syst Bacteriol 47(4): 1068–1072

    Article  PubMed  CAS  Google Scholar 

  • Gao H, Yang ZK, Wu L, Thompson DK, Zhou J (2006) Global transcriptome analysis of the cold shock response of Shewanella oneidensis MR-1 and mutational analysis of its classical cold shock proteins. J Bacteriol 188(12):4560

    Article  PubMed  CAS  Google Scholar 

  • Giaquinto L, Curmi PMG, Siddiqui KS, Poljak A, DeLong E, DasSarma S, Cavicchioli R (2007) The structure and function of cold shock proteins in archaea. J Bacteriol 189:5738–5748

    Article  PubMed  CAS  Google Scholar 

  • Gibson JAE, Miller MR, Davies NW, Neill GP, Nichols DS, Volkman JK (2005) Unsaturated diether lipids in the psychrotrophic archaeon Halorubrum lacusprofundi. Syst Appl Microbiol 28(1):19–26

    Article  PubMed  CAS  Google Scholar 

  • Goodchild A, Saunders NFW, Ertan H, Raftery M, Guilhaus M, Curmi PMG, Cavicchioli R (2004a) A proteomic determination of cold adaptation in the Antarctic archaeon, Methanococcoides burtonii. Mol Microbiol 53(1):309–321

    Article  PubMed  CAS  Google Scholar 

  • Goodchild A, Raftery M, Saunders NFW, Guilhaus M, Cavicchioli R (2004b) Biology of the cold adapted archaeon, Methanococcoides burtonii determined by proteomics using liquid chromatography-tandem mass spectrometry. J Proteome Res 3(6):1164–1176

    Article  PubMed  CAS  Google Scholar 

  • Goodchild A, Raftery M, Saunders NFW, Guilhaus M, Cavicchioli R (2005) Cold adaptation of the Antarctic archaeon. Methanococcoides burtonii assessed by proteomics using ICAT. J Proteome Res 4(2):473–480

    Article  PubMed  CAS  Google Scholar 

  • Hallam SJ et al (2006) Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc Natl Acad Sci 103(48):18296–18301

    Article  PubMed  CAS  Google Scholar 

  • Hjerde E et al (2008) The genome sequence of the fish pathogen Aliivibrio salmonicida strain LFI1238 shows extensive evidence of gene decay. BMC Genomics 9(1):616

    Article  PubMed  Google Scholar 

  • Hou S et al (2004) Genome sequence of the deep-sea gamma-proteobacterium Idiomarina loihiensis reveals amino acid fermentation as a source of carbon and energy. Proc Natl Acad Sci USA 101(52):18036–18041

    Article  PubMed  CAS  Google Scholar 

  • Jiang W, Hou Y, Inouye M (1997) CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J Biol Chem 272(1):196

    Article  PubMed  CAS  Google Scholar 

  • Kawamoto J, Kurihara T, Kitagawa M, Kato I, Esaki N (2007) Proteomic studies of an Antarctic cold-adapted bacterium, Shewanella livingstonensis Ac10, for global identification of cold-inducible proteins. Extremophiles 11(6):819–826

    Google Scholar 

  • Kim JF et al (2008) Complete genome sequence of Leuconostoc citreum KM20. J Bacteriol 190(8):3093–3094

    Article  PubMed  CAS  Google Scholar 

  • Kurihara T, Esaki N (2008) Proteomic studies of psychrophilic microorganisms. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles: from Biodiversity to Biotechnology, Springer Verlag, Berlin Heidelberg. pp 333–344

    Chapter  Google Scholar 

  • Lim J, Thomas T, Cavicchioli R (2000) Low temperature regulated DEAD-box RNA helicase from the Antarctic archaeon Methanococcoides burtonii. J Mol Biol 297:553–567

    Article  PubMed  CAS  Google Scholar 

  • Margesin R, Schinner F (1999) Cold-adapted organisms – ecology, physiology, enzymology and molecular biology. Springer, Berlin

    Google Scholar 

  • Medigue C et al (2005) Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res 15(10):1325–1335

    Article  PubMed  CAS  Google Scholar 

  • Methe BA et al (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci USA 102(31):10913–10918

    Article  PubMed  CAS  Google Scholar 

  • Murray AE, Grzymski JJ (2007) Diversity and genomics of Antarctic marine micro-organisms. Philos Trans R Soc Lond B Biol Sci 362:2259–2271

    Article  PubMed  CAS  Google Scholar 

  • Nichols DS, Miller MR, Davies NW, Goodchild A, Raftery M, Cavicchioli R (2004) Cold adaptation in the Antarctic archaeon Methanococcoides burtonii involves membrane lipid unsaturation. J Bacteriol 186(24):8508–8515

    Article  PubMed  CAS  Google Scholar 

  • Noon KR, Guymon R, Crain PF, McCloskey JA, Thomm M, Lim J, Cavicchioli R (2003) Influence of temperature on tRNA modification in Archaea: Methanococcoides burtonii (Topt 23°C) and Stetteria hydrogenophila (Topt 90°C). J Bacteriol 185:5483–5490

    Article  PubMed  CAS  Google Scholar 

  • Preston CM et al (1996) A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. Proc Natl Acad Sci USA 93(13):6241–6246

    Article  PubMed  CAS  Google Scholar 

  • Price B (2009) Microbial genesis, life and death in glacial ice. Can J Microbiol 55:1–11

    Article  PubMed  CAS  Google Scholar 

  • Qiu Y, Kathariou S, Lubman DM (2006) Proteomic analysis of cold adaptation in a Siberian permafrost bacterium-Exiguobacterium sibiricum 255–15 by two-dimensional liquid separation coupled with mass spectrometry. Proteomics 6(19):5221–5233

    Article  PubMed  CAS  Google Scholar 

  • Rabus R, Bruchert V, Amann J, Konneke M (2002) Physiological response to temperature changes of the marine, sulfate-reducing bacterium Desulfobacterium autotrophicum. FEMS Microbiol Ecol 42:409–417

    Article  PubMed  CAS  Google Scholar 

  • Rabus R et al (2004) The genome of Desulfotalea psychrophila, a sulfate-reducing bacterium from permanently cold Arctic sediments. Environ Microbiol 6(9):887–902

    Article  PubMed  CAS  Google Scholar 

  • Reith M et al (2008) The genome of Aeromonas salmonicida subsp. salmonicida A449: insights into the evolution of a fish pathogen. BMC Genomics 9(1):427

    Article  PubMed  Google Scholar 

  • Riley M et al (2008) Genomics of an extreme psychrophile. Psychromonas ingrahamii. BMC Genomics 9(1):210

    Article  PubMed  Google Scholar 

  • Risso C et al (2009) Genome-scale comparison and constraint-based metabolic reconstruction of the facultative anaerobic Fe(III)-reducer Rhodoferax ferrireducens. BMC Genomics 10(1):447

    Article  PubMed  Google Scholar 

  • Rodrigues DF, Ivanova N, He Z, Huebner M, Zhou J, Tiedje JM (2008) Architecture of thermal adaptation in an Exiguobacterium sibiricum strain isolated from 3 million year old permafrost: a genome and transcriptome approach. BMC Genomics 9(1):547

    Article  PubMed  Google Scholar 

  • Russell NJ (2008) Membrane components and cold sensing. psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 177–190

    Book  Google Scholar 

  • Ting L, Williams TJ, Cowley MJ, Lauro FM, Guilhaus M, Raftery MJ, Cavicchioli R (2010) Cold adaptation in the marine bacterium, Sphingopyxis alaskensis assessed using quantitative proteomics. Environmental Microbiology doi:10.1111/j.1462-2920.2010.02235.x

    Google Scholar 

  • Saunders NFW, Ng C, Raftery M, Guilhaus M, Goodchild A, Cavicchioli R (2006) Proteomic and computational analysis of secreted proteins with type I signal peptides from the Antarctic archaeon Methanococcoides burtonii. J Proteome Res 5:2457–2464

    Article  PubMed  CAS  Google Scholar 

  • Saunders NFW et al (2003) Mechanisms of thermal adaptation revealed from the genomes of the Antarctic archaea Methanogenium frigidum and Methanococcoides burtonii. Genome Res 13:1580–1588

    Article  PubMed  CAS  Google Scholar 

  • Saunders NFW, Goodchild A, Raftery M, Guilhaus M, Curmi PMG, Cavicchioli R (2005) Predicted roles for hypothetical proteins in the low-temperature expressed proteome of the Antarctic archaeon Methanococcoides burtonii. J Proteome Res 4(2):464–472

    Article  PubMed  CAS  Google Scholar 

  • Seo JB, Kim HS, Jung GY, Nam MH, Chung JH, Kim JY, Yoo JS, Kim CW, Kwon O (2004) Psychrophilicity of Bacillus psychrosaccharolyticus: a proteomic study. Proteomics 4(11):3654

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Haruki M, Takano K, Morikawa M, Kanaya S (2004) Possible involvement of an FKBP family member protein from a psychrotrophic bacterium Shewanella sp. SIB1 in cold-adaptation. Eur J Biochem 271(7):1372

    Article  PubMed  CAS  Google Scholar 

  • Tasara T, Stephan R (2006) Cold stress tolerance of Listeria monocytogenes: a review of molecular adaptive mechanisms and food safety implications. J Food Prot 69(6):1473–84

    PubMed  CAS  Google Scholar 

  • Ting L, Cowley MJ, Hoon SL, Guilhaus M, Raftery MJ, Cavicchioli R (2009) Normalization and statistical analysis of quantitative proteomics data generated by metabolic labeling. Mol Cell Proteomics 8:2227–2242

    Article  PubMed  CAS  Google Scholar 

  • Vezzi A et al (2005) Life at depth: photobacterium profundum genome sequence and expression analysis. Science 307(5714):1459–1461

    Article  PubMed  CAS  Google Scholar 

  • Wang F et al (2007) A novel filamentous phage from the deep-sea bacterium Shewanella piezotolerans WP3 Is induced at low temperature. J Bacteriol 189(19):7151–7153

    Article  PubMed  CAS  Google Scholar 

  • Wang F et al (2009) Role and regulation of fatty acid biosynthesis in the response of Shewanella piezotolerans WP3 to different temperatures and pressures. J Bacteriol 191(8):2574–2584

    Article  PubMed  CAS  Google Scholar 

  • Wang F et al (2010) Environmental adaptation: genomic analysis of the piezotolerant and psychrotolerant deep-sea iron reducing bacterium Shewanella piezotolerans WP3. PLoS One 3(4):e1937, 9(2):640–652

    Article  Google Scholar 

  • Weiner RM et al (2010) Complete genome sequence of the complex carbohydrate-degrading marine bacterium, Saccharophagus degradans strain 2–40T. PLoS Genet 4(5):e1000087, 9(2):653–663

    Article  Google Scholar 

  • Williams T, Burg D, Raftery M, Poljak A, Guilhaus M, Pilak O, Cavicchioli R (2010a) A global proteomic analysis of the insoluble, soluble and supernatant fractions of the psychrophilic archaeon Methanococcoides burtonii Part I: the effect of growth temperature. J Proteome Res 9(2):640–652

    Article  PubMed  CAS  Google Scholar 

  • Williams T, Burg D, Ertan H, Raftery M, Poljak A, Guilhaus M, Cavicchioli R (2010b) A global proteomic analysis of the insoluble, soluble and supernatant fractions of the psychrophilic archaeon Methanococcoides burtonii Part II: The effect of different methylated growth substrates. J Proteome Res 9(2):653–663

    Article  PubMed  CAS  Google Scholar 

  • Yoshimune K, Galkin A, Kulakova L, Yoshimura T, Esaki N (2005) Cold-active DnaK of an Antarctic psychrotroph Shewanella sp. Ac10 supporting the growth of dnaK-null mutant of Escherichia coli at cold temperatures. Extremophiles 9(2):145–150

    Google Scholar 

  • Zheng S, Ponder MA, Shih JYJ, Tiedje JM, Thomashow MF, Lubman DM (2007) A proteomic analysis of Psychrobacter arcticus 273–4 adaptation to low temperature and salinity using a 2-D liquid mapping approach. Electrophoresis 28(3):467–488

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Cavicchioli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this entry

Cite this entry

Lauro, F.M., Allen, M.A., Wilkins, D., Williams, T.J., Cavicchioli, R. (2011). Psychrophiles: Genetics, Genomics, Evolution. In: Horikoshi, K. (eds) Extremophiles Handbook. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53898-1_42

Download citation

Publish with us

Policies and ethics