Ecological Distribution of Microorganisms in Terrestrial, Psychrophilic Habitats

  • Bronwyn M. Kirby
  • Desiré Barnard
  • I. Marla Tuffin
  • Don A. Cowan


Low temperature environments, and particularly those in polar regions, have long been a source of fascination for explorers, naturalists, and scientists. The remoteness and apparent severity of these regions continues to draw attention from scientists and nonscientists alike: the biological scientists are particularly attracted by the scope for investigating biological processes at the margins of the “biological envelope.” Issues such as long-term survival of microbial cells (in ice cores), the structure and function of cryptic lithic communities, and the ability of organisms to adapt to temperatures approaching the freezing point of CO2 all contribute to the fascination of this field of study.

There has been much discussion in past literature on the most appropriate terminology for the classification of organisms inhabiting cold environments: the terms “psychrotroph,” “psychrophile,” “psychrotolerant,” and “cold-active” are all used to imply the ability to survive and...


Antarctic Peninsula Arctic Tundra Tundra Soil Alpine Tundra Antarctic Soil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aislabie JM, Chhourb KL, Saul DJ, Miyauchi S, Ayton J, Paetzold RF, Balks MR (2006) Dominant bacteria in soils of Marble Point and Wright Valley, Victoria Land, Antarctica. Soil Biol Biochem 38:3041–3056CrossRefGoogle Scholar
  2. Aislabie JM, Jorndan S, Barker GM (2008) Relation between soil classification and bacterial diversity in soils of the Ross Sea region, Antarctica. Geoderma 144:9–20CrossRefGoogle Scholar
  3. Allan RN, Lebbe L, Heyrman J, De Vos P, Buchanan CJ, Logan NA (2005) Brevibacillus levickii sp. nov. and Aneurinibacillus terranovensis sp. nov., two novel thermoacidophiles isolated from geothermal soils of northern Victoria Land, Antarctica. Int J Syst Evol Microbiol 55:1039–1050PubMedCrossRefGoogle Scholar
  4. Arenz BE, Held BW, Jurgens JA (2006) Fungal diversity in soils and historic wood from the Ross Sea Region of Antarctica. Soil Biol Biochem 38:3057–3064CrossRefGoogle Scholar
  5. Atlas RM, Di Menna ME, Cameron RE (1978) Ecological investigations of yeast in Antarctic soils. Antarct Res Ser 30:27–34CrossRefGoogle Scholar
  6. Axelrood PE, Chow ML, Arnold CS, Lu K, McDermott JM, Davies J (2002) Cultivation-dependent characterization of bacterial diversity from British Columbia forest soils subject to disturbance. Can J Microbiol 48:643–654PubMedCrossRefGoogle Scholar
  7. Babalola OO, Kirby BM, Le Roes-Hill M, Cook AE, Cary SC, Burton SG, Cowan DA (2009) Phylogenetic analysis of actinobacterial populations associated with Antarctic Dry Valley mineral soils. Int J Syst Evol Microbiol 11:566–576Google Scholar
  8. Baharaeen S, Vishniac HS (1982) Cryptococcus lupi sp. nov., an Antarctic Basidioblastomycete. Int J Syst Evol Microbiol 32:229–232Google Scholar
  9. Baublis JA, Wharton RA Jr, Volz PA (1991) Diversity of microfungi in an Antarctic dry valley. J Basic Microbiol 31:3–12PubMedCrossRefGoogle Scholar
  10. Belova SE, Pankratov TA, Detkova EN, Kaparullina EN, Dedysh SN (2009) Acidisoma tundrae gen. nov., sp. nov. and Acidisoma sibiricum sp. nov., two acidophilic, psychrotolerant members of the Alphaproteobacteria from acidic northern wetlands. Int J Syst Evol Microbiol 59:2283–2290PubMedCrossRefGoogle Scholar
  11. Bergauer P, Fonteyne PA, Nolard N, Schinner F, Margesin R (2005) Biodegradation of phenol and phenol-related compounds by psychrophilic and cold-tolerant alpine yeast. Chemosphere 59:909–918PubMedCrossRefGoogle Scholar
  12. Bowman JP, Nichols DS (2002) Aequorivita gen. nov., a member of the family Flavobacteriaceae isolated from terrestrial and marine Antarctic habitats. Int J Syst Evol Microbiol 52:1533–1541PubMedCrossRefGoogle Scholar
  13. Bowman JP, Cavanagh J, Austin JJ, Sanderson K (1996) Novel Psychrobacter species from Antarctic Ornithogenic Soils. Int J Syst Evol Microbiol 46:841–848Google Scholar
  14. Bozal N, Tudela E, Rossello-Mora R, Lalucat J, Guinea J (1997) Pseudoalteromonas antarctica sp. nov., Isolated from an Antarctic Coastal Environment. Int J Syst Evol Microbiol 47:345–351Google Scholar
  15. Bozal N, Montes MJ, Tudela E, Jiménez F, Guinea J (2002) Shewanella frigidimarina and Shewanella livingstonensis sp. nov. isolated from Antarctic coastal areas. Int J Syst Evol Microbiol 52:195–205PubMedGoogle Scholar
  16. Bozal N, Montes MJ, Mercade E (2007a) Pseudomas guineae sp. nov., a novel psychrotolerant bacterium from an Antarctic environment. Int J Syst Evol Microbiol 57:2609–2612PubMedCrossRefGoogle Scholar
  17. Bozal N, Montes MJ, Mercadé E (2007b) Pseudomonas guineae sp. nov., a novel psychrotolerant bacterium from an Antarctic environment. Int J Syst Evol Microbiol 57:2609–2612PubMedCrossRefGoogle Scholar
  18. Bozal N, Montes MJ, Minana-Galbis D, Manresa A, Mercadé E (2009) Shewanella vesiculosa sp. nov., a psychrotolerant bacterium isolated from an Antarctic coastal area. Int J Syst Evol Microbiol 59:336–340PubMedCrossRefGoogle Scholar
  19. Broady PA (1981a) The ecology of chasmoendolithic algae at coastal locations of Antarctica. Phycologia 20:259–272CrossRefGoogle Scholar
  20. Broady PA (1981b) The ecology of hypolithic terrestrial algae at the Vestfold Hills, Antarctica. Brit Phycol J 16:231–240CrossRefGoogle Scholar
  21. Buckley DH, Schmidt TM (2002) Exploring the biodiversity of Microbial Life. In: Staley JT, Reyenbach AL (ed) Wiley-Liss, New York, pp 183–208Google Scholar
  22. Callaghan TV, Jonasson S, Nichols H, Heywood RB, Wookey PA (2010) The Arctic and environmental change. Phys Sci Eng 352:259–276CrossRefGoogle Scholar
  23. Callegan RP, Nobre MF, McTernan PM, Battista JR, Navarro-Gonzalez R, McKay CP, da Costa MS, Rainey FA (2008) Description of four novel psychrophilic, ionizing radiation-sensitive Deinococcus species from alpine environments. Int J Syst Evol Microbiol 58:1252–1258PubMedCrossRefGoogle Scholar
  24. Cameron RE (1969) Cold desert characteristics and problems relevant to other arid lands. In: McGinnies WG, Goldman BJ (eds) Arid lands in perspective. American Association of Advanced Science, Washington, DC, pp 167–205Google Scholar
  25. Cameron RE (1972) Microbial and ecological investigations in Victoria Valley, Southern Victoria Land, Antarctica. Antarct Res Ser 20:195–260CrossRefGoogle Scholar
  26. Cameron RE, Benoit RE (1970) Microbial and ecological investigation of recent cinder cones, Deception Island, Antarctica – a preliminary report. Ecology 51:802–809CrossRefGoogle Scholar
  27. Cameron RE, King J, David CN (1970) Microbial ecology and microclimatology of soil sites in Dry Valleys of Southern Victoria Land, Antarctica. In: Holdgate MW (ed) Antarctic ecology. Acadmic, London, pp 702–716Google Scholar
  28. Cameron RE, Morelli FA, Johnson RM (1972) Bacterial species in soil and air of the Antarctic continent. Antarct J 7:187–189Google Scholar
  29. Chen M, Xiao X, Wang P, Zeng X, Wang F (2005) Arthrobacter ardleyensis sp. nov., isolated from Antarctic lake sediment and deep-sea sediment. Arch Microbiol 183:301–305PubMedCrossRefGoogle Scholar
  30. Cockell CS, Stokes MD (2004) Widespread colonization by polar hypoliths. Nature 431:414PubMedCrossRefGoogle Scholar
  31. Cockell CS, Rettberg P, Horneck G, Scherer K, Stokes MD (2003) Measurements of microbial protection from ultraviolet radiation in polar terrestiral microhabitats. Polar Biol 26:62–69Google Scholar
  32. Connell L, Redman R, Rodriquez R (2006) Distribution and abundance of fungi in the soils of Taylor Valley, Antarctica. Soil Biol Biochem 38:3083–3094CrossRefGoogle Scholar
  33. Connell LB, Redman R, Rodriquez R, Barret A, Iszard M, Fonseca A (2010) Dioszegia antarctica and D. cryoxerica spp.nov., two novel psychrophilic basidiomycetous yeasts from polar desert soils in Antarctica. Int J Syst Evol Microbiol 60:1466–1472PubMedCrossRefGoogle Scholar
  34. Cowan DA, Ah Tow L (2004) Endangered Antarctic environments. Ann Rev Microbiol 58:649–690CrossRefGoogle Scholar
  35. Cowan DA, Russell NJ, Mamais A, Sheppard DM (2002) Antarcitc Dry Valley mineral soils contain unexpectedly high levels of microbial biomass. Extremophiles 6:431–436PubMedCrossRefGoogle Scholar
  36. Davey MC, Clarke KJ (1991) The spatial distribution of microalgae in Antarctic fellfield soils. Antarct Sci 3:257–263CrossRefGoogle Scholar
  37. de la Torre JR, Goebel BM, Friedmann EI, Pace NR (2003) Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol 69: 3858–3867PubMedCrossRefGoogle Scholar
  38. Dedysh SN, Berestovskaya YY, Vasylieva LV, Belova SE, Khmelenina VN, Suzina NE, Trotsenko YA, Liesack W, Zavarzin GA (2004) Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands. Int J Syst Evol Microbiol 54:151–156PubMedCrossRefGoogle Scholar
  39. Dobson SJ, Colwell RR, McMeekin TA, Franzmann PD (1993) Direct sequencing of the polymerase chain reaction-amplified 16S rRNA gene of Flavobacterium gondwanense sp. nov. and Flavobacterium salegens sp. nov., two new species from a hypersaline Antarctic lake. Int J Syst Evol Microbiol 43:77–83Google Scholar
  40. Fell JW, Scorzetti G, Connell L, Craig S (2006) Biodiversity of Micro-Eukaryotes in Antarctic dry valley soils with <5% soil moisture. Soil Biol Biochem 38:3107–3119CrossRefGoogle Scholar
  41. Friedmann EI (1993) Antarctic microbiology. Wiley-Liss, New YorkGoogle Scholar
  42. Friedmann EI, Ocampo R (1976) Cyptoendolithic blue-green algae in the dry valleys: primary producers and the Antarctic desert ecosystem. Science 193:1247–1249PubMedCrossRefGoogle Scholar
  43. Fujimura KE, Egger KN, Upson R, Newsham KK, Read DJ (2008) Characterization of root-associated fungi from High Arctic tundra and similarity to Antarctic fungal communities. 3rd international conference on polar and alpine microbiology. Alberta, CanadaGoogle Scholar
  44. Gounot AM (1976) Biologic role of Arthrobacter in subterranean soils. Ann Inst Pasteur (Paris) 113:923–945Google Scholar
  45. Gounot AM (1999) Microbial life in permanently cold soils. In: Margesin R, Schinner F (eds) Cold-adapted organisms. Springer, Berlin, pp 3–15CrossRefGoogle Scholar
  46. Gupta P, Reddy GSN, Delille D, Shivaji S (2004) Arthrobacter gangotriensis sp. nov. and Arthrobacter kerguelensis sp. nov. from Antarctica. Int J Syst Evol Microbiol 54:2375–2378PubMedCrossRefGoogle Scholar
  47. Hambleton S, Sigler L (2008) Molecular phylogeny of polar and alpine isolates of Geomyces. 3rd international conference on polar and alpine microbiology. Alberta, CanadaGoogle Scholar
  48. Heal B (2000) The Arctic is an Ecosystem. The a web resources on human-environment relationships in the Arctic.
  49. Hirsch P, Mevs U, Kroppenstedt RM, Schumann P, Stackebrandt E (2004) Cryptoendolithic actinomycetes from Antarctic sandsonte rock samples: Micromonospora endolithica sp. nov. and two isolates related to Micromonospora coerulea Jensen 1932. Syst Appl Microbiol 27:166–174PubMedCrossRefGoogle Scholar
  50. Hwang CY, Zhang GI, Kang SH, Kim HJ, Cho BC (2009) Pseudomonas pelagia sp. nov., isolated from a culture of the Antarctic green alga Pyramimonas gelidcola. Int J Syst Evol Microbiol 59:3019–3024PubMedCrossRefGoogle Scholar
  51. Inoue K, Komagata K (1976) Taxonomic study on obligately psychrophilic bacteria isolated from Antarctica. J Gen Appl Microbiol 22:165–176CrossRefGoogle Scholar
  52. Imperio T, Viti C, Marri L (2008) Alicyclobacillus pohliae sp. nov., a thermophilic, endospore-forming bacterium isolated from geothermal soil of the north-west slope of Mount Melbourne (Antarctica). Int J Syst Evol Microbiol 58:221–225PubMedCrossRefGoogle Scholar
  53. Juck D, Charles T, Whyte LG, Greer CW (2000) Polyphasic microbial community analysis of petroleum hydrocarbon contaminated oils from two northern Canadian communities. FEMS Microbiol Ecol 33:241–249PubMedCrossRefGoogle Scholar
  54. Kobabe S, Wagner D, Pfeiffer EM (2004) Characterisation of microbial community composition of a Siberian tundra soil by fluorescence in situ hybridisation. FEMS Microbiol Ecol 50:13–23PubMedCrossRefGoogle Scholar
  55. Koch IH, Gich F, Dunfield PF, Overmann J (2008) Edaphobacter modestus gen. nov., sp. nov., and Edaphobacter aggregans sp. nov., acidobacteria isolated from alpine and forest soils. Int J Syst Evol Microbiol 58:1114–1122PubMedCrossRefGoogle Scholar
  56. Kurek E, Kornillowicz-Kowalska T, Slomka A, Melke J (2007) Characteristics of soil filamentous fingi communities isolated from various micro-relief forms in the high Arctic tundra (Bellsund region, Spitsbergen). Polish Polar Res 28:57–73Google Scholar
  57. Labbé D, Margesin R, Schinner F, Whyte LG, Greer CW (2007) Comparative phylogenetic analysis of microbial communities in pristine and hydrocarbon-contaminated alpine soils. FEMS Microbiol Ecol 59:466–475PubMedCrossRefGoogle Scholar
  58. Le Roes-Hill M, Rohland J, Meyers PR, Cowan DA, Burton SG (2009) Streptomyces hypolithicus sp. nov., isolated from an Antarctic hypolith community. Int J Syst Evol Microbiol 59:2032–2035PubMedCrossRefGoogle Scholar
  59. Löve D (1970) Subarctic and subalpine: where and what? Arct Antarct Alp Res 2:63–73CrossRefGoogle Scholar
  60. Loveland-Curtze J, Sherican PP, Gutshall KR, Brenchley JE (1999) Biochemical and phylogenetic analyses of psychrophilic isolates belonging to the Arthrobacter subgroup and description of Arthrobacter psychrolactophilus sp. nov. Arch Microbiol 171:355–363PubMedCrossRefGoogle Scholar
  61. Ludley KE, Robinson CH (2008) ‘Decomposer’ Basidiomycota in Arctic and Antarctic ecosystems. Soil Biol Biochem 40:11–29CrossRefGoogle Scholar
  62. Mancinelli RL (1984) Population dynamics of Alpine Tundra soil bacteria, Niwot Ridge, Colorado Front Range, U.S.A. Arct Antarct Alp Res 16:185–192CrossRefGoogle Scholar
  63. Männistö MK, Häggblom MM (2006) Characterization of psychrotolerant heterotrophic bacteria from Finnish Lapland109. Syst Appl Microbiol 29:229–243PubMedCrossRefGoogle Scholar
  64. Männistö K, Xu C, Willför S, Häggblom MM (2008) Characterization of extremely cold-tolerant EPS producing Pedobacter spp. from Arctic Finland. 3rd international conference on polar and alpine microbiology. Alberta, CanadaGoogle Scholar
  65. Männistö MK, Kontio H, Tiirola M, Häggblom MM (2008) Seasonal variation in active bacterial communities of fennoscandian tundra soil. 3rd international conference on polar and alpine microbiology. Alberta, CanadaGoogle Scholar
  66. Margesin R (2007) Alpine microorganisms: useful tools for low-temperature bioremediation. J Microbiol 45:281–285PubMedGoogle Scholar
  67. Margesin R, Fell JW (2008) Mrakiella cryoconiti gen. nov., sp. nov., a psychrophilic, anamorphic, basidiomycetous yeast from alpine and arctic habitats. Int J Syst Evol Microbiol 58:2977–2982PubMedCrossRefGoogle Scholar
  68. Margesin R, Schinner F (1997) Effect of temperatue on oil degradation by a psychrotrophic yeast in liquid culture and in soils. FEMS Microbiol Ecol 24:243–249CrossRefGoogle Scholar
  69. Margesin R, Gander S, Zacke G, Gounot AM, Schinner F (2003a) Hydrocarbon degradation and enzyme activities of cold adapted bacteria and yeast. Extremophiles 7:451–458PubMedCrossRefGoogle Scholar
  70. Margesin R, Labbé D, Schinner F, Greer CW, Whyte LG (2003b) Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl Environ Microbiol 69:3085–3092PubMedCrossRefGoogle Scholar
  71. Margesin R, Sproer C, Schumann P, Schinner F (2003c) Pedobacter cryoconitis sp. nov., a facultative psychrophile from alpine glacier cryoconite. Int J Syst Evol Microbiol 53:1291–1296PubMedCrossRefGoogle Scholar
  72. Margesin R, Schumann P, Spröer C, Gounot A-M (2004) Arthrobacter psychrophenolicus sp. nov., isolated from an alpine ice cave. Int J Syst Evol Microbiol 54:2067–2072PubMedCrossRefGoogle Scholar
  73. Margesin R, Fonteyne PA, Redl B (2005) Low-temperature biodegradation of high amounts of phenol by Rhodococcus spp. and basidiomycetous yeasts. Res Microbiol 156:68–75PubMedCrossRefGoogle Scholar
  74. Margesin R, Fonteyne PA, Schinner F, Sampaio JP (2007) Rhodotorula psychrophila sp. nov., Rhodotorula psychrophenolica sp. nov. and Rhodotorula glacialis sp. nov., novel psychrophilic basidiomycetous yeast species isolated from alpine environments. Int J Syst Evol Microbiol 57:2179–2184PubMedCrossRefGoogle Scholar
  75. Martineau C, Wyte LG, Greer CW (2008) Stable isotope probing analysis of methanotrophic bacterial activity in active layer soil from the Canadian high Arctic. 3rd international conference on polar and alpine microbiology. Alberta, CanadaGoogle Scholar
  76. Mayilraj S, Prasad GS, Suresh K, Saini HS, Shivaji S, Chakrabarti T (2005) Planococcus stackebrandtii sp. nov., isolated from a cold desert of the Himalayas, India. Int J Syst Evol Microbiol 55:91–94PubMedCrossRefGoogle Scholar
  77. Mayilraj S, Krishnamurthi S, Saha P, Saini HS (2006a) Rhodococcus kroppenstedtii sp. nov., a novel actinobacterium isolated from a cold desert of the Himalayas, India. Int J Syst Evol Microbiol 56:979–982PubMedCrossRefGoogle Scholar
  78. Mayilraj S, Suresh K, Schumann P, Kroppenstedt RM, Saini HS (2006b) Agrococcus lahaulensis sp. nov., isolated from a cold desert of the Indian Himalayas. Int J Syst Evol Microbiol 56:1807–1810PubMedCrossRefGoogle Scholar
  79. McCammon SA, Bowman JP (2000) Taxonomy of Antarctic Flavobacterium species: description of Flavobacterium gillisiae sp. nov., Flavobacterium tegetincola sp. nov. and Flavobacterium xanthum sp. nov., nom. rev., and reclassification of [Flavobacterium] salegens as Salegentibacter salegens gen. nov., comb. nov. Int J Syst Evol Microbiol 50:1055–1063PubMedCrossRefGoogle Scholar
  80. McCammon SA, Innes BH, Bowman JP, Franzmann PD, Dobson SJ, Holloway PE, Skerratt JH, Nichols PD, Rankin LM (1998) Flavobacterium hibernum sp. nov., a lactose-utilizing bacterium from a freshwater Antarctic lake. Int J Syst Evol Microbiol 48:1405–1412Google Scholar
  81. Mevs U, Stackebrandt E, Schumann P, Gallikowski CA, Hirsch P (2000) Modestobacter multiseptatus gen. nov., sp. nov., a budding actinomycete from soils of the Asgard Range (Transantarctic Mountains). Int J Syst Evol Microbiol 50:337–346PubMedCrossRefGoogle Scholar
  82. Moiroud A, Gounot AM (1969) A obligatory pyschrophile bacteria isolated from glacial mud. C R Acad Sci Hebd Seances Acad Sci D 269:2150–2152PubMedGoogle Scholar
  83. Nelson DM, Glawe AJ, Labeda DP, Cann IKO, Mackie RI (2009) Paenibacillus tundrae sp. nov. and Paenibacillus xylanexedens sp. nov., psychrotolerant, xylan-degrading bacteria from Alaskan tundra. Int J Syst Evol Microbiol 59:1708–1714PubMedCrossRefGoogle Scholar
  84. Nemergut DR, Costello EK, Meyer AF, Pescado MY (2005) Structure and function of alpine and arctic soil microbial communities. Res Microbiol 156:775–784PubMedCrossRefGoogle Scholar
  85. Nienow JA, Friedmann EI (1993) Terrestrial lithophytic (rock) communities. In: Antarctic Microbiology Friedmann EI (ed) Wiley-Liss, New York, pp 343–412Google Scholar
  86. Niwot Ridge Long Term Ecological Research Site. (2007)
  87. Omelchenko MB, Vasilieva LV, Zavarzin GA, Saveliena ND, Lysenko AM, Mityushina LL, Khmelenina VN, Trotsenko YA (1996) A novel psychrophilic methanotroph of the genus Methylobacter. Microbiol 65:339–343Google Scholar
  88. Oracle Education Foundation. The final word. (2010)
  89. Pacheco-Oliver M, McDonald IR, Groleae D, Murrell CJ, Miguez CB (2002) Detection of methanotrophs with highly divergent pmoA genes from Arctic soils. FEMS Microbiol Lett 209:313–319PubMedCrossRefGoogle Scholar
  90. Pankratov TA, Tindall BJ, Liesack W, Dedysh SN (2007) Mucilaginibacter paludis gen. nov., sp. nov. and Mucilaginibacter gracilis sp. nov., pectin-, xylan- and laminarin-degrading members of the family Sphingobacteriaceae from acidic Sphagnum peat bog. Int J Syst Evol Microbiol 57:2349–2354PubMedCrossRefGoogle Scholar
  91. Pegler DN, Spooner BM, Smither RIL (1980) Higher fungi of Antarctica, the sub-Antarctic zone and Falkland Islands. Kew Bulletin 35:499–561CrossRefGoogle Scholar
  92. Pointing SB, Chan Y, Lacap DC, Lau MCY, Jurgens JA, Farrel RL (2009) Highly specialized microbial diversity in hyper-arid polar desert. Proc Natl Acad Sci USA 106:19964–19969PubMedGoogle Scholar
  93. Prabahar V, Dube S, Reddy GSN, Shivaji S (2004) Pseudonocardia antarctica sp. nov. an Actinomycetes from McMurdo Dry Valleys, Antarctica. Int J Syst Evol Microbiol 27:66–71Google Scholar
  94. Reddy GSN, Aggarwal RK, Matsumoto GI, Shivaji S (2000) Arthrobacter flavus sp. nov., a psychrophilic bacterium isolated from a pond in McMurdo Dry Valley, Antarctica. Int J Syst Evol Microbiol 50:1553–1561PubMedCrossRefGoogle Scholar
  95. Reddy GSN, Prakash JSS, Matsumoto GI, Stackebrandt E, Shivaji S (2002) Arthrobacter roseus sp. nov., a psychrophilic bacterium isolated from an Antarctic cyanobacterial mat sample. Int J Syst Evol Microbiol 52:1017–1021PubMedCrossRefGoogle Scholar
  96. Reddy GSN, Prakash JSS, Vairamani M, Prabhakar S, Matsumoto GI, Shivaji S (2002c) Planococcus antarcticus and Planococcus psychrophilus spp. nov. isolated from cyanobacterial mat samples collected from ponds in Antarctica. Extremophiles 6:253–261PubMedCrossRefGoogle Scholar
  97. Reddy GSN, Matsumoto GI, Schumann P, Stackebrandt E, Shivaji S (2004) Psychrophilic pseudomonads from Antarctica: Pseudomonas antarctica sp. nov., Pseudomonas meridiana sp. nov. and Pseudomonas proteolytica sp. nov. Int J Syst Evol Microbiol 54:713–719PubMedCrossRefGoogle Scholar
  98. Robinson CH, Fisher PJ, Sutton BC (1998) Fungal biodiversity in dead leaves of fertilized plants of Dryas octopetala from a high arctic site. Mycol Res 102:573–576CrossRefGoogle Scholar
  99. Schinner F, Margesin R, Pümpel T (1992) Extracellular protease-producing psychrotrophic bacteria from High Alpine habitats. Arct Antarct Alp Res 24:88–92CrossRefGoogle Scholar
  100. Schmidt M, Prieme A, Stougaard P (2006) Rhodonellum psychrophilum gen. nov., sp. nov., a novel psychrophilic and alkaliphilic bacterium of the phylum Bacteroidetes isolated from Greenland. Int J Syst Evol Microbiol 56:2887–2892PubMedCrossRefGoogle Scholar
  101. Schumann P, Prauser H, Rainey FA, Stackebrandt E, Hirsch P (1997) Friedmanniella antarctica gen. nov., sp. nov., an LL-Diaminopimelic acid-containing Actinomycete from Antarctic sandstone. Int J Syst Evol Microbiol 47:278–283Google Scholar
  102. Shivaji S, Rao NS, Saisree L, Seth V, Bhargava PM (1989) Isolation and identification of Pseudomonas spp. from Schirmacher Oasis, Antarctica. Appl Environ Microbiol 55:767–770PubMedGoogle Scholar
  103. Siebert J, Hirsch P (1988) Characterisation of 15 selected coccal bacteria isolated from Antarctic rock and soil samples in the McMurdo Dry Valleys (South Victoria Land). Polar Biol 9:37–44PubMedCrossRefGoogle Scholar
  104. Simankova MV, Kotsyurbenko OR, Stackebrandt E, Kostrikina NA, Lysenko AM, Osipov GA, Nozhevnikova AN (2000) Acetobacterium tundrae sp. nov., a new psychrophilic acetogenic bacterium from tundra soil. Arch Microbiol 174:440–447PubMedCrossRefGoogle Scholar
  105. Singla AK, Mayilraj S, Kudo T, Krishnamurthi S, Prasad GS, Vohra RM (2005) Actinoalloteichus spitiensis sp. nov., a novel actinobacterium isolated from a cold desert of the Indian Himalayas. Int J Syst Evol Microbiol 55:2561–2564PubMedCrossRefGoogle Scholar
  106. Skatkhov VL, Gubin SV, Maksimovich SV, Rebrikov DV, Savilova AM, Kockhkina GA, Ozerskaya SM, Ivanushkina NE, Vorobyova EA (2008) Microbial communities of ancient seeds derived from permanently frozen Pleistocene deposits. Microbiol 77:348–355CrossRefGoogle Scholar
  107. Smith RIL (1994) Species-diversity and resource relationships of South Georgian fungi. Antarct Sci 6:45–52Google Scholar
  108. Smith MC, Bowman JP, Scott FJ, Line MA (2000) Sublithic bacteria associated with Antarctic quartz stones. Antarct Sci 12:177–184Google Scholar
  109. Smith JJ, Ah Tow L, Stafford W, Cary C, Cowan DA (2006) Bacterial diversity in three different Antarctic cold desert mineral soils. Microb Ecol 51:413–421PubMedCrossRefGoogle Scholar
  110. Stibor M, Potocky M, Pickova A, Karasova P, Russel NJ, Kralova B (2003) Characterization of cold-active dehydrogenases for secondary alcohols and glycerol in psychrotolerant bacteria isolated from Antarctic soils. Enzyme Microb Technol 32:532–538CrossRefGoogle Scholar
  111. Suziki T, Nakayama T, Kurihara T, Nishino T, Esaki N (2009) Cold-active lipolytic activity of psychrotrophic Acinetobacter sp. strain no.6. J Biosci Bioeng 92:144–148Google Scholar
  112. Suzuki KI, Sasaki J, Uramoto M, Nakase T, Komagata K (1997) Cryobacterium psychrophilum gen. nov., sp. nov., nom. rev., comb. nov., an obligately psychrophilic actinomycete to accommodate "Curtobacterium psychrophilum" Inoue and Komagata 1976. Int J Syst Evol Microbiol 47:474–478Google Scholar
  113. Thomas DN (2005) Photosynthetic microbes in freezing deserts. Trends Microbiol 13:87–88PubMedCrossRefGoogle Scholar
  114. Thomas-Hall S, Watson K, Scorzetti G (2002) Cryptococcus statzelliae sp. nov. and three novel strains of Cryptococcus victoriae, yeasts isolated from Antarctic. Int J Syst Evol Microbiol 52:2303–2308PubMedCrossRefGoogle Scholar
  115. Tosi S, Casado B, Gerdol R, Caretta G (2002) Fungi isolated from Antarctic mosses. Polar Biol 25:262–268Google Scholar
  116. Tourova TP, Omelchenko MV, Fegeding KV, Vasilieva LV (1999) The phylogenetic position of Methylobacter psychrophilus sp. nov. Microbiol 68:437–444Google Scholar
  117. Trotsenko YA, Khmelenina VN (2005) Aerobic methanotrophic bacteria of cold ecosystems. FEMS Microbiol Ecol 53:15–26PubMedCrossRefGoogle Scholar
  118. Vasilyeva LV, Omelchenko MV, Berestovskaya YY, Lysenko AM, Abraham WR, Dedysh SN, Zavarzin GA (2006) Asticcacaulis benevestitus sp. nov., a psychrotolerant, dimorphic, prosthecate bacterium from tundra wetland soil. Int J Syst Evol Microbiol 56:2083–2088PubMedCrossRefGoogle Scholar
  119. Vincent WF (1988) Microbial ecosystems of Antarctica. Cambridge University Press, Cambridge, UKGoogle Scholar
  120. Vishniac HS (1985) Cryptococcus socialis sp. nov. and Cryptococcus consortionis sp. nov., Antarctic Basidioblastomycetes. Int J Syst Evol Microbiol 35:119–122Google Scholar
  121. Vishniac HS (1993) The microbiology of Antarctic soils. In: Friedmann EI (ed) Antarctic microbiology. Wiley, New York, USA, pp 297–342Google Scholar
  122. Vishniac HS, Klinger JM (1986) Yeasts in the Antarctic deserts. In: Perspectives in microbial ecology, Slovene society for microbiology, Yugoslavia, pp 46–51Google Scholar
  123. Vishniac HS, Kurtzman CP (1992) Cryptococcus antarcticus sp. nov, and Cryptococcus albidosimilis sp. nov, Basidioblastomycetes from Antarctic Soils. Int J Syst Evol Microbiol 42:553Google Scholar
  124. Walton DWH (1984) The terrestrial environment. In: Antarctic ecology. Academic, New York, pp 1–60Google Scholar
  125. Wang F, Gai Y, Chen M, Xiao X (2009) Arthrobacter psychrochitiniphilus sp. nov., a psychrotrophic bacterium isolated from Antarctica. Int J Syst Evol Microbiol 59:2759–2762PubMedCrossRefGoogle Scholar
  126. Wartiainen I, Hestens AG, Svenning MM (2003) Methanotrophic diversity in high arctic wetlands on the islands of Svalbard (Norway) – denaturing gel electrophoresis analysis of soil DNA and enrichment cultures. Can J Microbiol 49:602–612PubMedCrossRefGoogle Scholar
  127. Wei YL, Kurihara T, Suzuki T, Esaki N (2003) A novel esterase from a psychrotrophic bacterium, Acinetobacter sp. strain no. 6, that belongs to the amidase signature family. J Mol Catal B: Enzym 23:357–365CrossRefGoogle Scholar
  128. Wicklow DT, Söderström BE (1997) Environmental and microbial relationships. Springer, BerlinGoogle Scholar
  129. Wood SA, Reuckert A, Cowan DA, Cary SC (2008) Sources of edaphic cyanobacterial diversity in the Dry Valleys of Eastern Antarctica. ISME J 2:308–320PubMedCrossRefGoogle Scholar
  130. Wu ZW, Bai FY (2006) Candida tibetensis sp. nov. and Candida linzhiensis sp. nov., novel anamorphic, ascomycetous yeast species from Tibet. Int J Syst Evol Microbiol 56:1153–1156PubMedCrossRefGoogle Scholar
  131. Yi H, Chun J (2006) Flavobacterium weaverense sp. nov. and Flavobacterium segetis sp. nov., novel psychrophiles isolated from the Antarctic. Int J Syst Evol Microbiol 56:1239–1244PubMedCrossRefGoogle Scholar
  132. Yi H, Oh HM, Lee JH, Kim SJ, Chun J (2005a) Flavobacterium antarcticum sp. nov., a novel psychrotolerant bacterium isolated from the Antarctic. Int J Syst Evol Microbiol 55:641Google Scholar
  133. Yi H, Yoon H II, Chun J (2005b) Sejongia antarctica gen. nov., sp. nov. and Sejongia jeonii sp. nov., isolated from the Antarctic. Int J Syst Evol Microbiol 55:416Google Scholar
  134. Yu Y, Xin YH, Liu HC, Chen B, Sheng J, Chi ZM, Zhou PJ, Zhang DC (2008) Sporosarcina antarctica sp. nov., a psychrophilic bacterium isolated from the Antarctic. Int J Syst Evol Microbiol 58:2114–2117PubMedCrossRefGoogle Scholar
  135. Zanina OG (2009) Fossil rodent burrows from frozen late Pleistoscene deposits of the Kolyma Lowland, Zool. Zoologiceskij Žurnal 84:728–736Google Scholar
  136. Zdanowski MK, Wêgleñski P (2001) Ecophysiology of soil bacteria in the vicinity of Henryk Arctowski Station, King George Island, Antarctica. Soil Biol Biochembn 33:819–829CrossRefGoogle Scholar
  137. Zhang DC, Liu HC, Xin YH, Zhou YG, Schinner F, Margesin R (2009) Dyadobacter psychrophilus sp. nov., a novel psychrophilic bacterium isolated from soil. Int J Syst Evol Microbiol, ijs.0.017178–0Google Scholar
  138. Zhang DC, Liu HC, Xin YH, Zhou YG, Schinner F, Margesin R (2009) Sphingopyxis bauzanensis sp. nov., a novel psychrophilic bacterium isolated from soil. Int J Syst Evol Microbiol, ijs.0.018218–0Google Scholar
  139. Zhang DC, Schumann P, Liu HC, Xin YH, Zhou YG, Schinner F, Margesin R (2009) Arthrobacter alpinus sp. nov., a psychrophilic bacterium isolated from alpine soil. Int J Syst Evol Microbiol, ijs.0.017178–0Google Scholar
  140. Zmuda-Baranowska MJ, Borsuk P, Grzesiak J, Zdanowski MK (2008) Bacterial decomposition of bird guano in the terrestrial Arctic and Antarctica – summary data. 3rd international conference on polar and alpine microbiology. Alberta, CanadaGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • Bronwyn M. Kirby
    • 1
  • Desiré Barnard
    • 1
  • I. Marla Tuffin
    • 1
  • Don A. Cowan
    • 1
  1. 1.Institute for Microbial Biotechnology and MetagenomicsUniversity of the Western CapeBellville, Cape TownSouth Africa

Personalised recommendations