Adaptation Mechanisms of Psychrotolerant Bacterial Pathogens

  • Pongpan Laksanalasmai
  • Laurel Burall
  • Atin R. Datta
Reference work entry


Food preservation has long relied on using a variety of processes to control the growth of microbial organisms, helping to preserve food quality and food safety. These processes include techniques such as acidification, anaerobic packaging, heat treatments, increased salinity, and cold storage. The comparatively recent advent of and ready access to refrigeration has been critical in the control of numerous microbial species in food products. However, in recent years, it has become increasingly apparent that a subset of these foodborne organisms is capable of growing at refrigeration temperatures. Growth under cold conditions leads to enrichment of these organisms when foods are contaminated with low or even undetectable titers of these psychrotolerant pathogens. Additionally, some of these organisms are also capable of causing disease, which following cold “enrichment” can lead to outbreaks and sporadic cases of disease. The increased awareness of these psychrotolerant...


Cold Shock Compatible Solute Glycine Betaine Yersinia Enterocolitica Cold Adaptation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aguilar PS, Hernandez-Arriaga AM, Cybulski LE, Erazo AC, de Mendoza D (2001) Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. EMBO J 20:1681–1691PubMedCrossRefGoogle Scholar
  2. Andersson A, Ronner U, Granum PE (1995) What problems does the food industry have with the spore-forming pathogens Bacillus cereus and Clostridium perfringens? Intl J Food Micro 28:145–155CrossRefGoogle Scholar
  3. Angelidis AS, Smith GM (2003a) Role of the glycine betaine and carnitine transporters in adaptation of Listeria monocytogenes to chill stress in defined medium. Appl Environ Microbiol 69:7492–7498PubMedCrossRefGoogle Scholar
  4. Angelidis AS, Smith GM (2003b) Three transporters mediate uptake of glycine betaine and carnitine by Listeria monocytogenes in response to hyperosmotic stress. Appl Environ Microbiol 69:1013–1022PubMedCrossRefGoogle Scholar
  5. Angelidis AS, Smith LT, Hoffman LM, Smith GM (2002) Identification of opuC as a chill-activated and osmotically activated carnitine transporter in Listeria monocytogenes. Appl Environ Microbiol 68:2644–2650PubMedCrossRefGoogle Scholar
  6. Annamalai T, Venkitanarayanan K (2009) Role of proP and proU in betaine uptake by Yersinia enterocolitica under cold and osmotic stress conditions. Appl Environ Microbiol 75:1471–1477PubMedCrossRefGoogle Scholar
  7. Annous BA, Becker LA, Bayles DO, Labeda DP, Wilkinson BJ (1997) Critical role of anteiso-C15:0 fatty acid in the growth of Listeria monocytogenes at low temperatures. Appl Environ Microbiol 63:3887–3894PubMedGoogle Scholar
  8. Badaoui Najjar M, Chikindas M, Montville TJ (2007) Changes in Listeria monocytogenes membrane fluidity in response to temperature stress. Appl Environ Microbiol 73:6429–6435PubMedCrossRefGoogle Scholar
  9. Baskakov I, Bolen DW (1998) Forcing thermodynamically unfolded proteins to fold. J Biol Chem 273: 4831–4834PubMedCrossRefGoogle Scholar
  10. Bayles DO, Wilkinson BJ (2000) Osmoprotectants and cryoprotectants for Listeria monocytogenes. Lett Appl Microbiol 30:23–27PubMedCrossRefGoogle Scholar
  11. Becker LA, Cetin MS, Hutkins RW, Benson AK (1998) Identification of the gene encoding the alternative sigma factor sigmaB from Listeria monocytogenes and its role in osmotolerance. J Bacteriol 180: 4547–4554PubMedGoogle Scholar
  12. Beckering CL, Steil L, Weber MH, Volker U, Marahiel MA (2002) Genomewide transcriptional analysis of the cold shock response in Bacillus subtilis. J Bacteriol 184:6395–6402PubMedCrossRefGoogle Scholar
  13. Beuchat LR, Clavero MR, Jaquette CB (1997) Effects of nisin and temperature on survival, growth, and enterotoxin production characteristics of psychrotrophic in beef gravy. Appl Environ Microbiol 63:1953–1958PubMedGoogle Scholar
  14. Borezee E, Pellegrini E, Berche P (2000) OppA of Listeria monocytogenes, an oligopeptide-binding protein required for bacterial growth at low temperature and involved in intracellular survival. Infect Immun 68:7069–7077PubMedCrossRefGoogle Scholar
  15. Bresolin G, Morgan JA, Ilgen D, Scherer S, Fuchs TM (2006a) Low temperature-induced insecticidal activity of Yersinia enterocolitica. Mol Microbiol 59: 503–512PubMedCrossRefGoogle Scholar
  16. Bresolin G, Neuhaus K, Scherer S, Fuchs TM (2006b) Transcriptional analysis of long-term adaptation of Yersinia enterocolitica to low-temperature growth. J Bacteriol 188:2945–2958PubMedCrossRefGoogle Scholar
  17. Bresolin G, Trcek J, Scherer S, Fuchs TM (2008) Presence of a functional flagellar cluster Flag-2 and low-temperature expression of flagellar genes in Yersinia enterocolitica W22703. Microbiology 154: 196–206PubMedCrossRefGoogle Scholar
  18. Brigulla M, Hoffmann T, Krisp A, Volker A, Bremer E, Volker U (2003) Chill induction of the SigB-dependent general stress response in Bacillus subtilis and its contribution to low-temperature adaptation. J Bacteriol 185:4305–4314PubMedCrossRefGoogle Scholar
  19. Carlin F, Girardin H, Peck MW et al (2000) Research on factors allowing a risk assessment of spore-forming pathogenic bacteria in cooked chilled foods containing vegetables: a FAIR collaborative project. Intl J Food Micro 60:117–135CrossRefGoogle Scholar
  20. Cavicchioli R (2006) Cold-adapted archaea. Nat Rev Microbiol 4:331–343PubMedCrossRefGoogle Scholar
  21. Centers for Disease Control and Prevention (CDC) (2009) Preliminary FoodNet Data on the incidence of infection with pathogens transmitted commonly through food–10 States, 2008. MMWR Morb Mortal Wkly Rep 58:333–337Google Scholar
  22. Chan YC, Wiedmann M (2009) Physiology and genetics of Listeria monocytogenes survival and growth at cold temperatures. Crit Rev Food Sci Nutr 49:237–253PubMedCrossRefGoogle Scholar
  23. Chaturongakul S, Raengpradub S, Wiedmann M, Boor KJ (2008) Modulation of stress and virulence in Listeria monocytogenes. Trends Microbiol 16:388–396PubMedCrossRefGoogle Scholar
  24. Chen Y, Korkeala H, Linden J, Lindstrom M (2008) Quantitative real-time reverse transcription-PCR analysis reveals stable and prolonged neurotoxin cluster gene activity in a Clostridium botulinum type E strain at refrigeration temperature. Appl Environ Microbiol 74:6132–6137PubMedCrossRefGoogle Scholar
  25. Choma C, Guinebretiere MH, Carlin F et al (2000) Prevalence, characterization and growth of Bacillus cereus in commercial cooked chilled foods containing vegetables. J Appl Microbiol 88:617–625PubMedCrossRefGoogle Scholar
  26. Christiansson A, Naidu AS, Nilsson I, Wadstrom T, Pettersson HE (1989) Toxin production by Bacillus cereus dairy isolates in milk at low temperatures. Appl Environ Microbiol 55:2595–2600PubMedGoogle Scholar
  27. Chung BH, Cannon RY, Smith RC (1976) Influence of growth temperature on glucose metabolism of a psychotrophic strain of Bacillus cereus. Appl Environ Microbiol 31:39–45PubMedGoogle Scholar
  28. Collins MD, East AK (1998) Phylogeny and taxonomy of the food-borne pathogen Clostridium botulinum and its neurotoxins. J Appl Microbiol 84:5–17PubMedCrossRefGoogle Scholar
  29. Cossart P, Toledo-Arana A (2008) Listeria monocytogenes, a unique model in infection biology: an overview. Microbes Infect 10:1041–1050PubMedCrossRefGoogle Scholar
  30. D'Amico S, Claverie P, Collins T, Georlette D, Gratia E, Hoyoux A, Meuwis MA, Feller G, Gerday C (2002) Molecular basis of cold adaptation. Philos Trans R Soc Lond B Biol Sci 357:917–925PubMedCrossRefGoogle Scholar
  31. Datta AR (2003) Listeria monocytogenes. In: Miliotis MD, Bier JW (eds) International handbook of foodborne pathogens. New York, Marcel Dekker, pp 105–121Google Scholar
  32. Dierick K, Van Coillie E, Swiecicka I, Meyfroidt G, Devlieger H, Meulemans A, Hoedemaekers G, Fourie L, Heyndrickx M, Mahillon J (2005) Fatal family outbreak of Bacillus cereus-associated food poisoning. J Clin Micro 43:4277–4279CrossRefGoogle Scholar
  33. Dussurget O, Dumas E, Archambaud C, Chafsey I, Chambon C, Hebraud M, Cossart P (2005) Listeria monocytogenes ferritin protects against multiple stresses and is required for virulence. FEMS Microbiol Lett 250:253–261PubMedCrossRefGoogle Scholar
  34. Edberg SC, Browne FA, Allen MJ (2007) Issues for microbial regulation: Aeromonas as a model. Crit Rev Microbiol 33:89–100PubMedCrossRefGoogle Scholar
  35. Ermolenko DN, Makhatadze GI (2002) Bacterial cold-shock proteins. Cell Mol Life Sci 59:1902–1913PubMedCrossRefGoogle Scholar
  36. Evans RI, Russell NJ, Gould GW, McClure PJ (1997) The germinability of spores of a psychrotolerant, non-proteolytic strain of Clostridium botulinum is influenced by their formation and storage temperature. J Appl Microbiol 83:273–280PubMedCrossRefGoogle Scholar
  37. Finlay WJ, Logan NA, Sutherland AD (2000) Bacillus cereus produces most emetic toxin at lower temperatures. Lett Appl Microbiol 31:385–389PubMedCrossRefGoogle Scholar
  38. Fouet A, Namy O, Lambert G (2000) Characterization of the operon encoding the alternative sigma(B) factor from Bacillus anthracis and its role in virulence. J Bacteriol 182:5306–5345CrossRefGoogle Scholar
  39. Francis KP, Stewart GS (1997) Detection and speciation of bacteria through PCR using universal major cold-shock protein primer oligomers. J Ind Microbiol Biotechnol 19:286–293PubMedCrossRefGoogle Scholar
  40. Francis KP, Mayr R, von Stetten F, Stewart GS, Scherer S (1998) Discrimination of psychrotrophic and mesophilic strains of the Bacillus cereus group by PCR targeting of major cold shock protein genes. Appl Environ Microbiol 64:3525–3529PubMedGoogle Scholar
  41. Fraser KR, Harvie D, Coote PJ, O’Byrne CP (2000) Identification and characterization of an ATP binding cassette L-carnitine transporter in Listeria monocytogenes. Appl Environ Microbiol 66:4696–4704PubMedCrossRefGoogle Scholar
  42. Fredriksson-Ahomaa M, Stolle A, Korkeala H (2006) Molecular epidemiology of Yersinia enterocolitica infections. FEMS Immunol Med Microbiol 47:315–329PubMedCrossRefGoogle Scholar
  43. Gerhardt PN, Tombras Smith L, Smith GM (2000) Osmotic and chill activation of glycine betaine porter II in Listeria monocytogenes membrane vesicles. J Bacteriol 182:2544–2550PubMedCrossRefGoogle Scholar
  44. Giaquinto L, Curmi PM, Siddiqui KS, Poljak A, DeLong E, DasSarma S, Cavicchioli R (2007) Structure and function of cold shock proteins in archaea. J Bacteriol 189:5738–5748PubMedCrossRefGoogle Scholar
  45. Gill CO, Reichel MP (1989) Growth of the cold-tolerant pathogens Yersinia enterocolitica, Aeromonas hydrophila and Listeria monocytogenes on high-pH beef package under vacuum or carbon dioxide. Food Microbiol 6:223–230CrossRefGoogle Scholar
  46. Giotis ES, Julotok M, Wilkinson BJ, Blair IS, McDowell DA (2008) Role of sigma B factor in the alkaline tolerance response of Listeria monocytogenes 10403S and cross-protection against subsequent ethanol and osmotic stress. J Food Prot 71:1481–1485PubMedGoogle Scholar
  47. Glaser P et al (2001) Comparative Genomics of Listeria Species. Science 294:849–852PubMedGoogle Scholar
  48. Goverde RL, Kusters JG, Veld JH Huis in 't (1994) Growth rate and physiology of Yersinia enterocolitica; influence of temperature and presence of the virulence plasmid. J Appl Bacteriol 77:96–104PubMedCrossRefGoogle Scholar
  49. Goverde RL, Veld JH Huis in't, Kusters JG, Mooi FR (1998) The psychrotrophic bacterium Yersinia enterocolitica requires expression of pnp, the gene for polynucleotide phosphorylase, for growth at low temperature (5 degrees C). Mol Microbiol 28:555–569PubMedCrossRefGoogle Scholar
  50. Graham AF, Mason DR, Maxwell FJ, Peck MW (1997) Effect of pH and NaCl on growth from spores of non-proteolytic Clostridium botulinum at chill temperature. Lett Appl Microbiol 24:95–100PubMedCrossRefGoogle Scholar
  51. Graumann P, Marahiel MA (1996) Some like it cold: response of microorganisms to cold shock. Arch Microbiol 166:293–300PubMedCrossRefGoogle Scholar
  52. Graumann PL, Marahiel MA (1998) A superfamily of proteins that contain the cold-shock domain. Trends Biochem Sci 23:286–290PubMedCrossRefGoogle Scholar
  53. Graumann P, Schroder K, Schmid R, Marahiel MA (1996) Cold shock stress-induced proteins in Bacillus subtilis. J Bacteriol 178:4611–4619PubMedGoogle Scholar
  54. Hain T, Steinweg C, Chakraborty T (2006) Comparative and functional genomics of Listeria spp. J Biotechnol 126:37–51PubMedCrossRefGoogle Scholar
  55. Hebraud M, Guzzo J (2000) The main cold shock protein of Listeria monocytogenes belongs to the family of ferritin-like proteins. FEMS Microbiol Lett 190:29–34PubMedCrossRefGoogle Scholar
  56. Hebraud M, Potier P (1999) Cold shock response and low temperature adaptation in psychrotrophic bacteria. J Mol Microbiol Biotechnol 1:211–219PubMedGoogle Scholar
  57. Helmann JD, Chamberlin MJ (1988) Structure and function of bacterial sigma factors. Annu Rev Biochem 57:839–872PubMedCrossRefGoogle Scholar
  58. Hinderink K, Lindstrom M, Korkeala H (2009) Group I Clostridium botulinum strains show significant variation in growth at low and high temperatures. J Food Prot 72:375–383PubMedGoogle Scholar
  59. Hunger K, Beckering CL, Wiegeshoff F, Graumann PL, Marahiel MA (2006) Cold-induced putative DEAD box RNA helicases CshA and CshB are essential for cold adaptation and interact with cold shock protein B in Bacillus subtilis. J Bacteriol 188:240–248PubMedCrossRefGoogle Scholar
  60. Imbert M, Gancel F (2004) Effect of different temperature downshifts on protein synthesis by Aeromonas hydrophila. Curr Microbiol 49:79–83PubMedCrossRefGoogle Scholar
  61. Janda JM, Abbott SL (2010) The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev 23:35–73PubMedCrossRefGoogle Scholar
  62. Jones PG, VanBogelen RA, Neidhardt FC (1987) Induction of proteins in response to low temperature in Escherichia coli. J Bacteriol 169:2092–2095PubMedGoogle Scholar
  63. Junttila JR, Niemela SI, Hirn J (1988) Minimum growth temperatures of Listeria monocytogenes and non-haemolytic Listeria. J Appl Bacteriol 65:321–327PubMedCrossRefGoogle Scholar
  64. Kaan T, Homuth G, Mader U, Bandow J, Schweder T (2002) Genome-wide transcriptional profiling of the Bacillus subtilis cold-shock response. Microbiology 148:3441–3455PubMedGoogle Scholar
  65. Kapperud G (1991) Yersinia enterocolitica in food hygiene. Int J Food Microbiol 12:53–65PubMedCrossRefGoogle Scholar
  66. Kazmierczak MJ, Mithoe SC, Boor KJ, Wiedmann M (2003) Listeria monocytogenes sigma B regulates stress response and virulence functions. J Bacteriol 185:5722–5734PubMedCrossRefGoogle Scholar
  67. Klein W, Weber MH, Marahiel MA (1999) Cold shock response of Bacillus subtilis: isoleucine-dependent switch in the fatty acid branching pattern for membrane adaptation to low temperatures. J Bacteriol 181:5341–5349PubMedGoogle Scholar
  68. Knochel S (1990) Growth characteristics of motile Aeromonas spp. isolated from different environments. Int J Food Microbiol 10:235–244PubMedCrossRefGoogle Scholar
  69. Ko R, Smith LT, Smith GM (1994) Glycine betaine confers enhanced osmotolerance and cryotolerance on Listeria monocytogenes. J Bacteriol 176:426–431PubMedGoogle Scholar
  70. Kroos L, Zhang B, Ichikawa H, Yu YT (1999) Control of sigma factor activity during Bacillus subtilis sporulation. Mol Microbiol 31:1285–1294PubMedCrossRefGoogle Scholar
  71. Laksanalamai P, Narayan S, Luo H, Robb FT (2009) Chaperone action of a versatile small heat shock protein from Methanococcoides burtonii, a cold adapted archaeon. Proteins 75:275–281PubMedCrossRefGoogle Scholar
  72. Lal M, Kaur H, Gupta LK (2003) Y.enterocolitica gastroenteritis - A prospective study. Indian J Med Microbiol 21:186–188PubMedGoogle Scholar
  73. Lechner S, Mayr R, Francis KP, Pruss BM, Kaplan T, Wiessner-Gunkel E, Stewart GS, Scherer S (1998) Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. Int J Syst Bacteriol 48(Pt 4):1373–1382PubMedCrossRefGoogle Scholar
  74. Lepka D, Kerrinnes T, Skiebe E, Hahn B, Fruth A, Wilharm G (2009) Adding to Yersinia enterocolitica gene pool diversity: two cryptic plasmids from a biotype 1A isolate. J Biomed Biotechnol 2009:398–434CrossRefGoogle Scholar
  75. Mansilla MC, Cybulski LE, Albanesi D, de Mendoza D (2004) Control of membrane lipid fluidity by molecular thermosensors. J Bacteriol 186:6681–6688PubMedCrossRefGoogle Scholar
  76. Mary P, Chihib NE, Charafeddine O, Defives C, Hornez JP (2002) Starvation survival and viable but nonculturable states in Aeromonas hydrophila. Microb Ecol 43:250–258PubMedCrossRefGoogle Scholar
  77. Mayr B, Kaplan T, Lechner S, Scherer S (1996) Identification and purification of a family of dimeric major cold shock protein homologs from the psychrotrophic Bacillus cereus WSBC 10201. J Bacteriol 178:2916–2925PubMedGoogle Scholar
  78. Mead PS, Slutsker L, Dietz V, McCaig LF, Bresee JS, Shapiro C, Griffin PM, Tauxe RV (1999) Food-related illness and death in the United States. Emerg Infect Dis 5:607–625PubMedCrossRefGoogle Scholar
  79. Mendum ML, Smith LT (2002) Characterization of glycine betaine porter I from Listeria monocytogenes and its roles in salt and chill tolerance. Appl Environ Microbiol 68:813–819PubMedCrossRefGoogle Scholar
  80. Neuhaus K, Francis KP, Rapposch S, Gorg A, Scherer S (1999) Pathogenic Yersinia species carry a novel, cold-inducible major cold shock protein tandem gene duplication producing both bicistronic and monocistronic mRNA. J Bacteriol 181:6449–6455PubMedGoogle Scholar
  81. Neuhaus K, Rapposch S, Francis KP, Scherer S (2000) Restart of exponential growth of cold-shocked Yersinia enterocolitica occurs after down-regulation of cspA1/A2 mRNA. J Bacteriol 182:3285–3288PubMedCrossRefGoogle Scholar
  82. Neuhaus K, Anastasov N, Kaberdin V, Francis KP, Miller VL, Scherer S (2003) The AGUAAA motif in cspA1/A2 mRNA is important for adaptation of Yersinia enterocolitica to grow at low temperature. Mol Microbiol 50:1629–1645PubMedCrossRefGoogle Scholar
  83. Nickel M, Homuth G, Bohnisch C, Mader U, Schweder T (2004) Cold induction of the Bacillus subtilis bkd operon is mediated by increased mRNA stability. Mol Genet Genomics 272:98–107PubMedCrossRefGoogle Scholar
  84. Olsen KN, Larsen MH, Gahan CG, Kallipolitis B, Wolf XA, Rea R, Hill C, Ingmer H (2005) The Dps-like protein Fri of Listeria monocytogenes promotes stress tolerance and intracellular multiplication in macrophage-like cells. Microbiology 151:925–933PubMedCrossRefGoogle Scholar
  85. Olsvik O, Kapperud G (1982) Enterotoxin production in milk at 22 and 4 degrees C by Escherichia coli and Yersinia enterocolitica. Appl Environ Microbiol 43:997–1000PubMedGoogle Scholar
  86. Osborne SL, Latham CF, Wen PJ, Cavaignac S, Fanning J, Foran PG, Meunier FA (2007) The Janus faces of botulinum neurotoxin: sensational medicine and deadly biological weapon. J Neurosci Res 85: 1149–1158PubMedCrossRefGoogle Scholar
  87. Pace NR (2009) Mapping the tree of life: progress and prospects. Microbiol Mol Biol Rev 73:565–576PubMedCrossRefGoogle Scholar
  88. Park JH, Kim DJ, Park YH, Seok SH, Cho SA, Baek MW, Lee HY, Park JH (2004) Characteristics of the gastritis induced by Listeria monocytogenes in mice: microbiology, histopathology, and mRNA expression of inflammatory mediators with time course of infection. Microb Pathog 37:87–94PubMedCrossRefGoogle Scholar
  89. Peck MW (2009) Biology and genomic analysis of Clostridium botulinum. Adv Microb Physiol 55: 183–265, 320PubMedCrossRefGoogle Scholar
  90. Perdikogianni C, Galanakis E, Michalakis M, Giannoussi E, Maraki S, Tselentis Y, Charissis G (2006) Yersinia enterocolitica infection mimicking surgical conditions. Pediatr Surg Int 22:589–592PubMedCrossRefGoogle Scholar
  91. Peterson JD, Umayam LA, Dickinson TM, Hickey EK, White O (2001) The Comprehensive Microbial Resource. Nucleic Acids Research 29:123–125PubMedCrossRefGoogle Scholar
  92. Raimann E, Schmid B, Stephan R, Tasara T (2009) The alternative sigma factor sigma (L) of L. monocytogenes promotes growth under diverse environmental stresses. Foodborne Pathog Dis 6:583–591PubMedCrossRefGoogle Scholar
  93. Roberts TA, Hobbs G (1968) Low temperature growth characteristics of clostridia. J Appl Bacteriol 31:75–88PubMedCrossRefGoogle Scholar
  94. Robins-Browne RM (1997) Yersinia enterocolitica. In: Doyle MP, Beuchat LR, Montville TJ (eds) Food microbiology fundamentals and frontiers. ASM Press, Washington, DC, pp 192–215Google Scholar
  95. Russell NJ (1990) Cold adaptation of microorganisms. Philos Trans R Soc Lond B Biol Sci 326:595–608PubMedCrossRefGoogle Scholar
  96. Schmid B, Klumpp J, Raimann E, Loessner MJ, Stephan R, Tasara T (2009) Role of cold shock proteins in growth of Listeria monocytogenes under cold and osmotic stress conditions. Appl Environ Microbiol 75: 1621–1627PubMedCrossRefGoogle Scholar
  97. Schofield GM (1992) Emerging food-borne pathogens and their significance in chilled foods. J Appl Bacteriol 72:267–273PubMedCrossRefGoogle Scholar
  98. Shin JH, Price CW (2007) The SsrA-SmpB ribosome rescue system is important for growth of Bacillus subtilis at low and high temperatures. J Bacteriol 189:3729–3737PubMedCrossRefGoogle Scholar
  99. Stenfors LP, Granum PE (2001) Psychrotolerant species from the Bacillus cereus group are not necessarily Bacillus weihenstephanensis. FEMS Microbiol Lett 197:223–228PubMedCrossRefGoogle Scholar
  100. Suutari M, Laakso S (1994) Microbial fatty acids and thermal adaptation. Crit Rev Microbiol 20:285–328PubMedCrossRefGoogle Scholar
  101. Suzuki N, Takaya N, Hoshino T, Nakamura A (2007) Enhancement of a sigma(B)-dependent stress response in Bacillus subtilis by light via YtvA photoreceptor. J Gen Appl Microbiol 53:81–88PubMedCrossRefGoogle Scholar
  102. Turner AM, Love CF, Alexander RW, Jones PG (2007) Mutational analysis of the Escherichia coli DEAD box protein CsdA. J Bacteriol 189:2769–2776PubMedCrossRefGoogle Scholar
  103. Valero M, Fernandez PS, Salmeron MC (2003) Influence of pH and temperature on growth of Bacillus cereus in vegetable substrates. Int J Food Microbiol 82:71–79PubMedCrossRefGoogle Scholar
  104. van Netten P, van De MA, van Hoensel P, Mossel DA, Perales I (1990) Psychrotrophic strains of Bacillus cereus producing enterotoxin. J Appl Bacteriol 69:73–79PubMedCrossRefGoogle Scholar
  105. Walker SJ, Archer P, Banks JG (1990) Growth of Listeria monocytogenes at refrigeration temperatures. J Appl Bacteriol 68:157–162PubMedCrossRefGoogle Scholar
  106. Weber MH, Beckering CL, Marahiel MA (2001a) Complementation of cold shock proteins by translation initiation factor IF1 in vivo. J Bacteriol 183: 7381–7386PubMedCrossRefGoogle Scholar
  107. Weber MH, Volkov AV, Fricke I, Marahiel MA, Graumann PL (2001b) Localization of cold shock proteins to cytosolic spaces surrounding nucleoids in Bacillus subtilis depends on active transcription. J Bacteriol 183:6435–6443PubMedCrossRefGoogle Scholar
  108. Wemekamp-Kamphuis HH, Wouters JA, Sleator RD, Gahan CG, Hill C, Abee T (2002) Multiple deletions of the osmolyte transporters BetL, Gbu, and OpuC of Listeria monocytogenes affect virulence and growth at high osmolarity. Appl Environ Microbiol 68:4710–4716PubMedCrossRefGoogle Scholar
  109. Wilcox MH, Cook AM, Eley A, Spencer RC (1992) Aeromonas spp as a potential cause of diarrhoea in children. J Clin Pathol 45:959–963PubMedCrossRefGoogle Scholar
  110. Yamanaka K, Inouye M, Inouye S (1999) Identification and characterization of five cspA homologous genes from Myxococcus xanthus. Biochim Biophys Acta 1447:357–365PubMedCrossRefGoogle Scholar
  111. Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222PubMedCrossRefGoogle Scholar
  112. Zhu K, Bayles DO, Xiong A, Jayaswal RK, Wilkinson BJ (2005) Precursor and temperature modulation of fatty acid composition and growth of Listeria monocytogenes cold-sensitive mutants with transposon-interrupted branched-chain alpha-keto acid dehydrogenase. Microbiology 151:615–623PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • Pongpan Laksanalasmai
    • 1
  • Laurel Burall
    • 1
  • Atin R. Datta
    • 1
  1. 1.Center for Food Safety and Applied NutritionFood and Drug AdministrationLaurelUSA

Personalised recommendations