Diversity of Psychrophilic Bacteria from Sea Ice - and Glacial Ice Communities

  • Karen JungeEmail author
  • Brent Christner
  • James T. Staley


Earth is primarily a cold, marine planet with 90% of the ocean’s waters being at 5°C or lower. Frozen soils (permafrost), glaciers and ice sheets, polar sea ice, and snow cover make up 20% of the Earth’s surface environments (Deming and Eicken 2007). A great diversity of microorganisms has been found in these habitats. However, only those that are adapted to life in the cold can be active in them and thus influence biogeochemical cycles.

Cold-adapted microbes are termed psychrophiles or cold-loving, having minimum, optimum and maximum growth temperatures at or below 0°C, 15°C, and 20°C, respectively or psychrotolerant(with growth maxima above 25°C but the capacity to grow to very low temperature (Morita 1975). Recently, additional definitions have been proposed, such as “moderate psychrophiles” with a minimum and maximum growth temperature at or below 0°C and 25°C (Helmke and Weyland 2004), “psychro-active” (organisms growing at or below −1°C, Laucks et al. 2005) and the...


Psychrophilic Bacterium Maximum Growth Temperature Brine Channel Brine Volume Polaromonas Vacuolata 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169PubMedGoogle Scholar
  2. Arrigo KR, Mock T, Lizotte MP (2010) Primary producers and sea ice. In: Thomas DN, Dieckmann GS (eds) Sea ice: an introduction to its physics, chemistry, biology, and geology. Blackwell, Oxford, pp 283–375Google Scholar
  3. Auman AJ, Breezee JL, Gosink JJ, Kämpfer P, Staley JT (2006) Psychromonas ingrahamii, sp. nov., a novel gas vacuolate, psychrophilic bacterium isolated from Arctic polar sea ice. Int J Syst Evol Microbiol 56:1001–1007PubMedCrossRefGoogle Scholar
  4. Auman AJ, Breezee JL, Gosink JJ, Kämpfer P, Staley JT (2010) Psychromonas boydii, sp. nov., a novel gas vacuolate, psychrophilic bacterium isolated from an Arctic sea ice core from Point Barrow, Alaska. Int J Syst Evol Microbiol 60:84–92PubMedCrossRefGoogle Scholar
  5. Baas-Becking LGM (1934) Geobiologie of Inleiding Tot de Milieukunde. W. P. Van Stockum & Zoon, N.V., Den Haag, The NetherlandsGoogle Scholar
  6. Bowman JP, McCammon SA, Brown MV, McMeekin TA (1997a) Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol 63:3068–3078PubMedGoogle Scholar
  7. Bowman JP, McCammon SA, Brown MV, Nichols PD, McMeekin TA (1997b) Psychroserpens burtonensis gen nov., sp. nov., and Gelidibacter algens gen. nov., sp. nov., psychrophilic bacteria isolated from Antarctic lacustrine and sea ice habitats. Int J Syst Bacteriol 47:670–677PubMedCrossRefGoogle Scholar
  8. Bowman JP, McCammon SA, Lewis T, Skerrat JH, Brown JL, Nichols DS, McMeekin TA (1998a) Psychroflexus torquis gen. nov., sp. nov., a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense (Dobson et al. 1993) as Psychroflexus gondwanense gen. nov. comb. nov. Microbiology 144:1601–1609PubMedCrossRefGoogle Scholar
  9. Bowman JP, Gosink JJ, McCammon SA, Lewis TE, Nichols DS et al (1998b) Colwellia demingiae sp. nov., Colwellia hornerae, sp. nov. Colwellia rossensis sp. nov. and Colwellia psychrotropica sp. nov. psychrophilic Antarctic species with the ability to synthesize docosaheaenoic acid (22:6w3). Int J Syst Bacteriol 48:1171–1180CrossRefGoogle Scholar
  10. Bowman JP (2008) Genomic analysis of psychrophilic prokaryotes. In: Margesin R et al (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin/Heidelberg, pp 265–284CrossRefGoogle Scholar
  11. Breezee J, Cady N, Staley JT (2004) Sub-zero growth of the sea ice bacterium, “Psychromonas ingrahamii.” Microb Ecol 47:300–305PubMedCrossRefGoogle Scholar
  12. Brinkmeyer R, Glöckner FO, Helmke E, Amann R (2004) Predominance of beta-proteobacteria in summer melt pools on Arctic pack ice. Limnol Oceanogr 49:1013–1021CrossRefGoogle Scholar
  13. Brinkmayer R, Knittel K, Ruegens H, Weyland R, Amann R, Helmke E (2003) Diversity and community structure of bacterial communities in Arctic versus Antarctic sea ice. Appl Environ Microbiol 69:6610–6619CrossRefGoogle Scholar
  14. Brown MV, Bowman JP (2001) A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Microbiol Ecol 35:267–275PubMedCrossRefGoogle Scholar
  15. Delille D (1993) Seasonal changes in the abundance and composition of marine heterotrophic bacterial communities in an Antarctic coastal area. Polar Biol 13:463–470CrossRefGoogle Scholar
  16. Delille D, Rosiers C (1996) Seasonal changes of Antarctic marine bacterioplankton and sea ice bacterial assemblages. Polar Biol 16:27–34Google Scholar
  17. Delille D, Fiala M, Kuparinen J, Kuosa H, Plessis C (2002) Seasonal changes in microbial biomass in the first-year ice of the Terre Adelie area (Antarctica). Aquat Microb Ecol 28:257–265CrossRefGoogle Scholar
  18. Deming JW (2010) Sea ice bacteria and viruses. In: Thomas DN, Dieckmann GS (eds) Sea ice: an introduction to its physics, chemistry, biology, and geology. Blackwell, Oxford, pp 247–282Google Scholar
  19. Deming JW, Eicken H (2007) Life in ice. In: Sullivan WT, Baross JA (eds) Planets and life: the emerging science of astrobiology. Cambridge University Press, Cambridge, pp 292–312Google Scholar
  20. Eicken H (1992) The role of sea ice in structuring Antarctic ecosystems. Polar Biol 12:3–13CrossRefGoogle Scholar
  21. Garneau ME, Vincent WF, Terrado R, Lovejoy C (2009) Importance of particle-associated bacterial heterotrophy in a coastal Arctic ecosystem. J Mar Syst 75:185–197CrossRefGoogle Scholar
  22. Garrison DL, Close AR (1993) Winter ecology of the sea-ice biota in Weddell Sea pack ice. Mar Ecol Prog Ser 96:17–31CrossRefGoogle Scholar
  23. Garrison DL, Ackley SF, Buck KR (1983) A physical mechanism for establishing algal populations in frazil ice. Nature 306:363–365CrossRefGoogle Scholar
  24. Gleitz M, vd Loeff MR, Thomas DN, Dieckmann GS, Millero FJ (1995) Comparison of summer and winter inorganic carbon, oxygen and nutrient concentrations in Antarctic sea ice brine. Mar Chem 51:81–91CrossRefGoogle Scholar
  25. Gleitz M, Grossmann S, Scharek R, Smetacek V (1996) Ecology of diatom and bacterial assemblages in water associated with melting summer sea ice in the Weddell Sea, Antarctica. Antarct Sci 8:135–146CrossRefGoogle Scholar
  26. Golden KM, Ackley SF, Lytle VI (1998) The percolation phase transition in sea ice. Science 282:2238–2241PubMedCrossRefGoogle Scholar
  27. Gosink J, Irgens RL, Staley JT (1993a) Vertical distribution of bacteria from Arctic sea ice. FEMS Microbiol Ecol 102:85–90CrossRefGoogle Scholar
  28. Gosink J, Staley JT (1995) Biodiversity of gas vacuolate bacteria from Antarctic sea ice and water. Appl Environ Microbiol 61:3486–3489PubMedGoogle Scholar
  29. Gosink J, Herwig RP, Staley JT (1997) Octadecobacter arcticus, gen. nov., sp. nov. and O. antarcticus sp. nov., nonpigmented, psychrophilic gas vacuolate bacteria from polar sea ice and water. Syst Appl Microbiol 20:356–365CrossRefGoogle Scholar
  30. Gosink JJ, Irgens RL, Staley JT (1993b) Vertical distribution of bacteria in Arctic sea ice. FEMS Microbiol Ecol 102:85–90CrossRefGoogle Scholar
  31. Gosink JJ, Woese CR, Staley JT (1998) Polaribacter gen. nov, with three new species, P. irgensii sp. nov., P. franzmannii sp. nov., and P. filamentus sp. nov., gas vacuolate polar marine bacteria of the Cytophaga/ Flavobacterium/Bacteroides Group and reclassification of “Flectobacillus glomeratus” as Polaribacter glomeratus. Int J Syst Bacteriol 48:223–235PubMedCrossRefGoogle Scholar
  32. Grossi SM, Kottmeier ST, Sullivan CW (1984) Sea ice microbial communities. III. Seasonal abundance of microalgae and associated bacteria. Microb Ecol 10:231–242CrossRefGoogle Scholar
  33. Helmke E, Weyland H (1995) Bacteria in sea ice and underlying water of the Eastern Weddell Sea in midwinter. Mar Ecol Prog Ser 117:269–287CrossRefGoogle Scholar
  34. Horner RA (1985) Sea ice biota. CRC Press, Boca RatonGoogle Scholar
  35. Irgens RL, Gosink JJ, Staley JT (1996) Polaromonas vacuolata, nov. gen. et sp., gas vacuolate bacteria from sea waters of Antarctica. Int J Syst Bacteriol 46:822–826PubMedCrossRefGoogle Scholar
  36. Irgens RL, Suzuki I, Staley JT (1989) Gas vacuolate bacteria obtained from marine waters of Antarctica. Curr Microbiol 18:262–265CrossRefGoogle Scholar
  37. Junge K, Gosink JJ, Hoppe HG, Staley JT (1998) Arthrobacter, Brachybacterium and Planococcus isolates identified from Antarctic sea ice brine. Description of Planococcus mcmeekinii, sp. nov. Syst Appl Microbiol 21:306–314PubMedCrossRefGoogle Scholar
  38. Junge K, Imhoff JF, Staley JT, Deming JW (2002) Phylogenetic diversity of numerically important bacteria in Arctic sea ice. Microb Ecol 43:315–328PubMedCrossRefGoogle Scholar
  39. Junge K, Eicken H, Deming JW (2004a) Bacterial activity at –2°C to –20°C in Arctic wintertime sea ice. Appl Environ Microbiol 70:550–557PubMedCrossRefGoogle Scholar
  40. Kellogg C, Deming JW (2009) Comparison of free-living, suspended particle, and aggregate-associated bacterial and archaeal communities in the Laptev Sea. Aquat Microb Ecol 57:1–18CrossRefGoogle Scholar
  41. Collins RE, Carpenter S, Deming JW (2008) Spatial and temporal dynamics of particles, bacteria, and extracellular polymeric substances in Arctic winter sea ice. J Mar Syst 74:902–917CrossRefGoogle Scholar
  42. Collins RE, Rocap G, Deming JW (2010) Persistence of bacterial and archaeal communities in sea ice through an Arctic winter. Environ Microbiol 12:1828–1841PubMedCrossRefGoogle Scholar
  43. Huston AL, Krieger-Brockett BB, Deming JW (2000) Remarkably low temperature optima for extracellular enzyme activity from Arctic bacteria and sea ice. Environ Microbiol 2:383–388PubMedCrossRefGoogle Scholar
  44. Kaartokallio H, Tuomainen J, Kuosa H, Kuparinen J, Martikainen PJ, Servomaa K (2008) Succession of sea-ice bacterial communities in the Baltic Sea fast ice. Polar Biol 31:783–793CrossRefGoogle Scholar
  45. Kottmeier ST, Sullivan CW (1987) Late winter primary production and bacterial production in sea ice and seawater west of the Antarctic Peninsula. Mar Ecol Prog Ser 36:287–298CrossRefGoogle Scholar
  46. Krembs C, Eicken H, Junge K, Deming JW (2002) High concentrations of exopolymeric substances in Arctic winter sea ice: implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep Sea Res I 49:2163–2181CrossRefGoogle Scholar
  47. Krembs C, Deming JW (2008) The role of exopolymers in microbial adaptation to sea ice. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 247–264CrossRefGoogle Scholar
  48. Kirchman DL, Moran XAG, Ducklow H (2009) Microbial growth in the polar oceans- role of temperature and potential impact of climate change. Nat Rev Microbiol 7:451–459PubMedGoogle Scholar
  49. Laurion I, Demers S, Vezina AF (1995) The microbial food web associated with the ice algal assemblage: biomass and bacteriovory of nanoflagellate protozoans in Resolute Passage (High Canadian Arctic). Mar Ecol Prog Ser 120:77–87CrossRefGoogle Scholar
  50. Legendre L, Ackley SF, Dieckmann GS, Gulliksen B, Horner R, Hoshiai T, Melnikov IA, Reeburgh WS, Spindler M, Sullivan CW (1992) Ecology of sea ice biota 2. Global significance. Polar Biol 12:429–444Google Scholar
  51. Maranger R, Bird DF, Juniper SK (1994) Viral and bacterial dynamics in Arctic sea-ice during the spring algal bloom near Resolute, NWT, Canada. Mar Ecol Prog Ser 111:121–127CrossRefGoogle Scholar
  52. Meiners K, Gradinger R, Fehling J, Civitarese G, Spindler M (2003) Vertical distribution of exopolymer particles in sea ice of the Fram Strait (Arctic) during autumn. Mar Ecol Prog Ser 248:1–13CrossRefGoogle Scholar
  53. Methé BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang X, Moult J, Madupu R, Nelson WC, Dodson RJ, Brinkac LM, Daugherty SC, Durkin AS, DeBoy RT, Kolonay JF, Sullivan SA, Zhou L, Davidsen TM, Wu M, Huston AL, Lewis M, Weaver B, Weidman JF, Khouri H, Utterback TR, Feldblyum TV, Fraser CM (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci USA 102:10913–10918PubMedCrossRefGoogle Scholar
  54. Mock T, Thomas DN (2005) Recent advances in sea-ice microbiology. Environ Microbiol 7:605–619PubMedCrossRefGoogle Scholar
  55. Palmisano GA, Garrison DL (1993) Microorganisms in Antarctic sea ice. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 167–219Google Scholar
  56. Petri R, Imhoff JF (2001) Genetic analysis of sea-ice bacterial communities of the Western Baltic Sea using an improved double gradient method. Polar Biol 24:252–257CrossRefGoogle Scholar
  57. Petrich C, Eicken H (2010) Growth, structure and properties of sea ice. In: Thomas DN, Dieckmann GS (eds) Sea ice: an introduction to its physics, chemistry, biology, and geology. Blackwell, Oxford, pp 23–78Google Scholar
  58. Rysgaard S, Glud RN (2004) Anaerobic N 2 production in Arctic sea ice. Limnol Oceanogr 49:86–94CrossRefGoogle Scholar
  59. Rysgaard S, Glud RN, Sejr MK, Blicher ME, Stahl HJ (2008) Denitrification activity and oxygen dynamics in Arctic sea ice. Polar Biol 31:527–537CrossRefGoogle Scholar
  60. Riley M, Staley JT, Danchin TSA, Wang TZ, Brettin TS, Hauser LJ, Land ML, Thompson LS (2008) Genomics of an extreme psychrophile Psychromonas ingrahamii. BMC Genomics 9:210PubMedCrossRefGoogle Scholar
  61. Serreze MC, Holland MM, Stroeve J (2007) Perspectives on the Arctic’s shrinking sea-ice cover. Science 315:1533–1536PubMedCrossRefGoogle Scholar
  62. Staley JT, Junge K, Deming JW (2001) And some like it cold: sea ice microbiology. In: Staley JT, Reysenbach AL (eds) Biodiversity of life: foundation of earth’s biosphere. Wiley-Liss, New York, pp 423–438Google Scholar
  63. Staley JT (1980) The gas vacuole: An early organelle of prokaryote motility? Orig Life 10:111–116CrossRefGoogle Scholar
  64. Staley JT (1997) Biodiversity: are microbial species threatened? Curr Opin Biotechnol 8:340–345PubMedCrossRefGoogle Scholar
  65. Staley JT, Irgens RL, Herwig RP (1989) Gas vacuolate bacteria found in Antarctic sea ice with ice algae. Appl Environ Microbiol 55:1033–1036PubMedGoogle Scholar
  66. Staley JT, Gosink J, Irgens RL, Van Neerven ARW (1994) Gas vacuolate heterotrophic bacteria. In: Guerrero R, Pedros-Alio C (eds) Trends in microbial ecology, Spanish Society for Microbiology, pp 527–530Google Scholar
  67. Staley JT, Gosink JJ, Hedlund BP (1996) New bacterial taxa from polar sea ice communities and culture collections. In: Samson RA, Stalpers JA, van der Mei D, Stouthamer AH (eds) Culture collections to improve the quality of life. Ponsen and Looyen, Wageningen, pp 114–118Google Scholar
  68. Staley JT, Konopka AL (1985) Measurement of in situ activities of heterotrophic microorganisms in terrestrial habitats. Annu Rev Microbiol 39:321–346PubMedCrossRefGoogle Scholar
  69. Staley JT, Konopka AL, Dalmasso JP (1987) Spatial and temporal distribution of Caulobacter spp. in two mesotrophic lakes. FEMS Microbiol Ecol 45:1–6CrossRefGoogle Scholar
  70. Staley JT, Lehmicke L, Palmer FE, Peet R, Wissmar RC (1982) Impact of Mt. St. Helens’ eruption on bacteriology of lakes in blast zone. Appl Environ Microbiol 43:664–670PubMedGoogle Scholar
  71. Stroeve JC, Serreze MC, Fetterer F, Arbetter T, Meier W, Maslanik J, Knowles K (2005) Tracking the Arctic’s shrinking ice cover: Another extreme September minimum in 2004. Geophys Res Lett 32:L04501CrossRefGoogle Scholar
  72. Sullivan CW, Palmisano AC (1984) Sea ice microbial communities: Distribution, abundance, and diversity of ice bacteria in McMurdo Sound, Antarctica, in 1980. Appl Environ Microbiol 47:788–795PubMedGoogle Scholar
  73. Thomas DN, Dieckmann GS (2002) Antarctic sea ice–a habitat for extremophiles. Science 295:641–644PubMedCrossRefGoogle Scholar
  74. Thomas DN, Dieckman GS (eds) (2010) Sea ice: an introduction to its physics, chemistry, biology, and geology. Blackwell, Oxford, p 621Google Scholar
  75. Weissenberger J, Grossmann S (1998) Experimental formation of sea ice: importance of water circulation and wave action for incorporation of phytoplankton and bacteria. Polar Biol 20:178–188CrossRefGoogle Scholar
  76. Wells LE, Deming JW (2003) Abundance of Bacteria, the Cytophaga-Flavobacterium cluster and Archaea in cold oligotrophic waters and nepheloid layers of the Northwest Passage, Canadian Archipelago. Aquat Microb Ecol 31:19–31CrossRefGoogle Scholar
  77. Wells LE, Deming JW (2006a) Characterization of a cold-active bacteriophage on two psychrophilic marine hosts. Aquat Microb Ecol 45:15–29CrossRefGoogle Scholar
  78. Wells LE, Deming JW (2006b) Effects of temperature, salinity and clay particles on inactivation and decay of cold-active marine Bacteriophage 9A. Aquat Microb Ecol 45:31–39CrossRefGoogle Scholar
  79. Wells LE, Deming JW (2006c) Modelled and measured dynamics of viruses in Arctic winter sea-ice brines. Environ Microbiol 8:1115–1121PubMedCrossRefGoogle Scholar

BC’s Refs

  1. Abyzov SS (1993) Microorganisms in the Antarctic ice. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 265–295Google Scholar
  2. Abyzov SS, Mitskevich IN, Poglazova MN (1998) Microflora of the deep glacier horizons of central Antarctica. Microbiology (Moscow) 67:66–73Google Scholar
  3. Amato P, Christner BC (2009) Energy metabolism response to low temperature and frozen conditions in Psychrobacter cryohalolentis. Appl Environ Microbiol 75:711–718PubMedCrossRefGoogle Scholar
  4. Amato P, Doyle SM, Christner BC (2009) Macromolecular synthesis by yeasts under frozen conditions. Environ Microbiol 11:589–596PubMedCrossRefGoogle Scholar
  5. Bakermans C, Tsapin AI, Souza-Egipsy V, Gilichinsky DA, Nealson KH (2003) Reproduction and metabolism at −10°C of bacteria isolated from Siberian permafrost. Environ Microbiol 5:321–326PubMedCrossRefGoogle Scholar
  6. Bakermans C, Ayala-del-Río HL, Ponder MA, Vishnivetskaya T, Gilichinsky D, Thomashow MF, Tiedje JM (2006) Psychrobacter cryohalolentis sp. nov. and Psychrobacter arcticus sp. nov., isolated from Siberian permafrost. Int J Syst Evol Microbiol 56:1285–1291PubMedCrossRefGoogle Scholar
  7. Bakermans C, Tollaksen SL, Giometti CS, Wilkerson C, Tiedje JM, Thomashow MF (2007) Proteomic analysis of Psychrobacter cryohalolentis K5 during growth at subzero temperatures. Extremophiles 11:343–354PubMedCrossRefGoogle Scholar
  8. Battista JR (1997) Against all odds: the survival strategies of Deinococcus radiodurans. Annu Rev Microbiol 51:203–224PubMedCrossRefGoogle Scholar
  9. Bergholz PW, Bakermans C, Tiedje JM (2009) Psychrobacter arcticus 273-4 uses resource efficiency and molecular motion adaptations for subzero temperature growth. J Bacteriol 191:2340–2352PubMedCrossRefGoogle Scholar
  10. Bidle KD, Lee SH, Marchant DR, Falkowski PG (2007) Fossil genes and microbes in the oldest ice on Earth. Proc Natl Acad Sci 104:13455–13460PubMedCrossRefGoogle Scholar
  11. Campen RK, Sowers T, Alley RB (2003) Evidence of microbial consortia metabolizing within a low-latitude mountain glacier. Geology 31:231–234CrossRefGoogle Scholar
  12. Carpenter EJ, Lin S, Capone DG (2000) Bacterial activity in South Pole snow. Appl Environ Microbiol 66:4514–4517PubMedCrossRefGoogle Scholar
  13. Chaturvedi P, Shivaji S (2006) Exiguobacterium indicum sp. nov. a psychrophilic bacterium from the Hamta glacier of the Himalayan mountain ranges of India. Int J Syst Evol Microbiol 56:2765–2770PubMedCrossRefGoogle Scholar
  14. Christner BC, Mosley-Thompson E, Thompson LG, Zagorodnov V, Sandman K, Reeve JN (2000) Recovery and identification of viable bacteria immured in glacial ice. Icarus 144:479–485CrossRefGoogle Scholar
  15. Christner BC, Mosley-Thompson E, Thompson LG, Reeve JN (2001) Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environ Microbiol 3:570–577PubMedCrossRefGoogle Scholar
  16. Christner BC (2002) Incorporation of DNA and protein precursors into macromolecules by bacteria at −15°C. Appl Environ Microbiol 68:6435–6438PubMedCrossRefGoogle Scholar
  17. Christner BC, Mosley-Thompson E, Thompson LG, Reeve JN (2003) Bacterial recovery from ancient ice. Environ Microbiol 5:433–436PubMedCrossRefGoogle Scholar
  18. Christner BC, Royston-Bishop G, Foreman CM, Arnold BR, Tranter M, Welch KA, Lyons WB, Tsapin AI, Studinger M, Priscu JC (2006) Limnological conditions in Subglacial Lake Vostok, Antarctica. Limnol Oceanogr 51:2485–2501CrossRefGoogle Scholar
  19. Christner BC, Morris CE, Foreman CM, Cai R, Sands DC (2008a) Ubiquity of biological ice nucleators in snowfall. Science 319:1214PubMedCrossRefGoogle Scholar
  20. Christner BC, Cai R, Morris CE, McCarter KS, Foreman CM, Skidmore ML, Montross SN, Sands DC (2008b) Geographic, seasonal, and precipitation chemistry influence on the abundance and activity of biological ice nucleators in rain and snow. Proc Natl Acad Sci USA 105:18854–18859PubMedCrossRefGoogle Scholar
  21. Christner BC, Skidmore ML, Priscu JC, Tranter M, Foreman CM (2008c) Bacteria in subglacial environments. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechology. Springer, New York, pp 51–71CrossRefGoogle Scholar
  22. D’Elia TR, Veerapaneni V, Theraisnathan RS (2009) Isolation of fungi from Lake Vostok accretion ice. Mycologia 101:751PubMedCrossRefGoogle Scholar
  23. Foght J, Aislabie J, Turner S, Brown CE, Ryburn J, Saul DJ, Lawson W (2004) Culturable bacteria in subglacial sediments and ice from two southern hemisphere glaciers. Microb Ecol 47:329–340PubMedCrossRefGoogle Scholar
  24. Gilichinsky D, Rivkina E, Shcherbakova V, Laurinavichuis K, Tiedje J (2003) Supercooled water brines within permafrost – An unknown ecological niche for microorganisms: a model for astrobiology. Astrobiology 3:331–341PubMedCrossRefGoogle Scholar
  25. Gilichinsky D, Rivkina E, Bakermans C, Shcherbakova V, Petrovskaya L, Ozerskaya N, Ivanushkina N, Kochkina G, Laurinavichuis K, Pecheritsina S, Fattakhova R, Tiedje JM (2005) Biodiversity of cryopegs in permafrost. FEMS Microbiol Ecol 53:117–128PubMedCrossRefGoogle Scholar
  26. Gilichinsky DA, Wilson GS, Friedmann EI, Mckay CP, Sletten RS, Rivkina EM, Vishnivetskaya TA, Erokhina LG, Ivanushkina NE, Kochkina GA, Shcherbakova VA, Soina VS, Spirina EV, Vorobyova EA, Fyodorov-Davydov DG, Hallet B, Ozerskaya SM, Sorokovikov VA, Laurinavichyus KS, Shatilovich AV, Chanton JP, Ostroumov VE, Tiedje JM (2007) Micobrobial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology. Astrobiology 7:275–311PubMedCrossRefGoogle Scholar
  27. Johnson SS, Hebsgaard MB, Christensen TR, Mastepanov M, Nielsen R, Munch K, Brand T, Gilbert MT, Zuber MT, Bunce M, Rønn R, Gilichinsky D, Froese D, Willerslev E (2007) Ancient bacteria show evidence of DNA repair. Proc Natl Acad Sci 36:14401–14405CrossRefGoogle Scholar
  28. Junge K, Eicken H, Deming JW (2004b) Bacterial activity at −2°C to −20°C in Arctic wintertime sea ice. Appl Environ Microbiol 70:550–557PubMedCrossRefGoogle Scholar
  29. Junge K, Eicken H, Swanson BD, Deming JW (2006) Bacterial incorporation of leucine into protein down to −20°C with evidence for potential activity in sub-eutectic saline ice formations. Cryobiology 52:417–429PubMedCrossRefGoogle Scholar
  30. Loveland-Curtze J, Miteva V, Brenchley J (2010) Novel ultramicrobacterial isolates from a deep Greenland ice core represent a proposed new species, Chryseobacterium greenlandense sp. nov. Extremophiles 14:61–69PubMedCrossRefGoogle Scholar
  31. Luckey TD (1991) Radiation hormesis. CRC Press, Boca RatonGoogle Scholar
  32. Mader HM, Wadham PME, JL WEW, Parkes RJ (2006) Subsurface ice as a microbial habitat. Geology 34:169–172CrossRefGoogle Scholar
  33. McKay CP (2001) The deep biosphere: lessons for planetary exploration. In: Fredrickson JK, Fletcher M (eds) Subsurface microbiology and biogeochemistry. Wiley-Liss, New York, pp 315–327Google Scholar
  34. Miteva VI, Sheridan PP, Brenchley JE (2004) Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Appl Environ Microbiol 70:202–213PubMedCrossRefGoogle Scholar
  35. Miteva VI, Brenchley JE (2005) Detection and isolation of ultrasmall microorganisms from a 120, 000-Year-Old Greenland glacier ice core. Appl Environ Microbiol 71:7806–7818PubMedCrossRefGoogle Scholar
  36. Miteva V (2008) Bacteria in snow and glacier ice. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechology. Springer, New York, pp 31–50CrossRefGoogle Scholar
  37. Miteva V, Teacher C, Sowers T, Brenchley J (2009) Comparison of the microbial diversity at different depths of the GISP2 Greenland ice core in relationship to deposition climates. Environ Microbiol 11:640–656PubMedCrossRefGoogle Scholar
  38. Mosier A, Murray A, Fritsen CH (2007) Microbiota within the perennial ice cover of Lake Vida, Antarctica. FEMS Microbiol Ecol 59:274–288PubMedCrossRefGoogle Scholar
  39. Panikov NS, Flanagan PW, Oechel WC, Mastepanov MA, Christensen TR (2006) Microbial activity in soils frozen to below −39°C. Soil Biol Biochem 38:785–794CrossRefGoogle Scholar
  40. Pearson RT, Derbyshire W (1974) NMR studies of water adsorbed on a number of silica surfaces. J Colloid Interface Sci 46:232–248CrossRefGoogle Scholar
  41. Price PB (2000) A habitat for psychrophiles in deep Antarctic ice. Proc Natl Acad Sci 97:1247–1251PubMedCrossRefGoogle Scholar
  42. Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci 101:4631–4636PubMedCrossRefGoogle Scholar
  43. Priscu JC, Christner BC (2004) Earth’s icy biosphere. In: Bull AT (ed) Microbial diversity and bioprospecting. American Society for Microbiology Press, Washington, pp 130–145Google Scholar
  44. Priscu JC, Tulaczyk S, Studinger M, Kennicutt MC II, Christner BC, Foreman CM (2008) Antarctic subglacial water: origin, evolution and microbial ecology. In: Vincent W, Laybourn-Parry J (eds) Polar limnology. Oxford University Press, Oxford, pp 119–135Google Scholar
  45. Rainey FA, Ray K, Gatz FM, BZ NMF, Bagaley D, Rash BA, Park MJ, Earl AM, Shank NC, Small AM, Henk MC, Battista JR, Kämpfer P, da Costa MS (2005) Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl Environ Microbiol 71:5225–5235PubMedCrossRefGoogle Scholar
  46. Raymond JA, Christner BC, Schuster SC (2008) An ice-adapted bacterium from the Vostok ice core. Extremophiles 12:713–717PubMedCrossRefGoogle Scholar
  47. Rivkina EM, Friedmann EI, McKay CP, Gilichinsky DA (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol 66:3230–3233PubMedCrossRefGoogle Scholar
  48. Simon C, Wiezer A, Strittmatter AW, Daniel R (2009) Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Appl Environ Microbiol 75:7519–7526PubMedCrossRefGoogle Scholar
  49. Souchez R, Janssens M, Lemmens M, Stauffer B (1995) Very low oxygen concentration in basal ice from Summit, Central Greenland. Geophys Res Lett 22:2001–2004CrossRefGoogle Scholar
  50. Sowers T (2001) The N2O record spanning the penultimate deglaciation from the Vostok ice core. J Geograph Res 106:31903–31914Google Scholar
  51. Tung HC, Price PB, Bramall NE, Vrdoljak G (2006) Microorganisms metabolizing on clay grains in 3-km-deep Greenland basal ice. Astrobiology 6:69–86PubMedCrossRefGoogle Scholar
  52. Vishnivetskaya TA, Petrova MA, Urbance J, Ponder M, Moyer CL, Gilichinsky DA, Tiedje JM (2006) Bacterial community in ancient Siberian permafrost as characterized by culture and culture-independent methods. Astrobiology 6:400–414PubMedCrossRefGoogle Scholar
  53. Xiang S, Yao T, An L, Xu B, Wang J (2005) 16S rRNA sequences and differences in bacteria isolated from the Muztag Ata glacier at increasing depths. Appl Environ Microbiol 71:4619–4627PubMedCrossRefGoogle Scholar
  54. Zhang DC, Wang HX, Liu HC, Dong XZ, Zhou PJ (2006) Flavobacterium glaciei sp. nov., a psychrophilic bacterium isolated from the China No. 1 glacier. Int J Syst Evol Microbiol 56:2921–2925PubMedCrossRefGoogle Scholar
  55. Zhu F, Wang S, Zhou P (2003) Flavobacterium xinjiangense sp. nov. and Flavobacterium omnivorum sp. nov., novel psychrophiles from China No 1 glacier. Int J Syst Evol Microbiol 53:853–857PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • Karen Junge
    • 1
    Email author
  • Brent Christner
    • 2
  • James T. Staley
    • 3
  1. 1.Polar Science Center, Applied Physics LaboratoryUniversity of WashingtonSeattleUSA
  2. 2.Department of Biological SciencesLouisiana State UniversityBaton RougeUSA
  3. 3.Department of MicrobiologyUniversity of WashingtonSeattleUSA

Personalised recommendations