Ecology of Psychrophiles: Subglacial and Permafrost Environments

  • Jill A. Mikucki
  • S. K. Han
  • Brian D. Lanoil
Reference work entry


A significant portion of the Earth’s biosphere is found in perennially cold environments (less than 5°C) including the deep ocean, frozen soils, terrestrial glaciers, perennially ice-covered lakes, and polar sea ice and ice sheets (Priscu and Christner 2004). Approximately 20% of Earth’s surface is currently ice-covered with the Greenland and Antarctic ice sheets covering ~10% of the terrestrial land surface. This ice stores ~75% of the Earth’s freshwater supply (Paterson 1998). The Antarctic ice sheets, which contain ~90% of the planet’s ice, would result in a sea level rise of ~70 m if it melted ( Approximately 20% of world’s soil ecosystems are frozen ground (permafrost). Ice is a dynamic feature on our planet and a key regulator of the global climate system; how cold systems will respond to a warming world is of fundamental concern. The awareness that icy systems harbor cold-loving microorganisms raises new questions about climatic feedbacks...


Permafrost Environment Subglacial Lake Subglacial Environment Permafrost Sediment Subglacial Water 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Agustsdottir AM, Brantley SL (1994) Volatile fluxes integrated over four decades at Grimsvotn volcano, Iceland. J Geophys Res 99:9505–9522CrossRefGoogle Scholar
  2. Amann RI, Ludwig W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169PubMedGoogle Scholar
  3. Anderson D (1967) Ice nucleation and the substrate-ice interface. Nature 216:563–566CrossRefGoogle Scholar
  4. Anderson SP, Drever JI, Humphrey NF (1996) Glacial chemical weathering regimes in relation to the continental norm. In: Bottrell SH (ed) Proceedings of the fourth international symposium on the geochemistry of the earth’s surface. University of Leeds Press, Leeds, pp 529–533Google Scholar
  5. Anderson SP, Drever JI, Frost CD, Holden P (2000) Chemical weathering in the foreland of a retreating glacier. Geochim Cosmochim Acta 64:1173–1189CrossRefGoogle Scholar
  6. Anisimov O, Reneva S (2006) Permafrost and changing climate: the Russian perspective. AMBIO 35:169–175PubMedCrossRefGoogle Scholar
  7. Appenzeller T (1991) Fire and ice under the deep-sea floor. Science 252:1790–1792PubMedCrossRefGoogle Scholar
  8. Bakermans C, Nealson KH (2004) Relationship of critical temperature to macromolecular synthesis and growth yield in Psychrobacter cryopegella. J Bacteriol 186:2340–2345PubMedCrossRefGoogle Scholar
  9. Bakermans C, Tsapin AI, Souza-Egipsy V, Gilichinsky DA, Nealson KH (2003) Reproduction and metabolism at –10°C of bacteria isolated from Siberian permafrost. Environ Microbiol 5(4):321–326PubMedCrossRefGoogle Scholar
  10. Bell RE, Studinger M, Shuman CA, Fahnestock MA, Joughin I (2007) Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams. Nature 445:904–907PubMedCrossRefGoogle Scholar
  11. Bennet B, Glasser N (1996) Glacial geology: ice sheets and landforms. Wiley, Chichester, EnglandGoogle Scholar
  12. Bentley CR (1987) Antarctic ice streams: a review. J Geophys Res 92:8843–8858CrossRefGoogle Scholar
  13. Bhatia M, Sharp M, Foght J (2006) Distinct bacterial communities exist beneath a high arctic polythermal glacier. Appl Environ Microbiol 72:5838–5845PubMedCrossRefGoogle Scholar
  14. Bidle KA, Kastner M, Bartlett DH (1999) A phylogenetic analysis of microbial communities associated with methane hydrate containing marine fluids and sediments in the Cascadia margin (ODP site 892B). FEMS Microbiol Lett 177:101–108PubMedCrossRefGoogle Scholar
  15. Bidle KD, Lee S, Marchant DR, Falkowski PG (2007) Fossil genes and microbes in the oldest ice on Earth. PNAS 104(33):13455–13460PubMedCrossRefGoogle Scholar
  16. Black RF (1954) Permafrost: a review. GSA Bulletin 65(9):839–856CrossRefGoogle Scholar
  17. Blunier T (2000) Frozen methane escapes from the sea floor. Science 288:68–69CrossRefGoogle Scholar
  18. Bowen GJ, Beerling DJ, Koch PL, Zachos JC, Quattlebaum T (2004) A humid climate state during the Palaeocene/Eocene thermal maximum. Nature 432:495–499PubMedCrossRefGoogle Scholar
  19. Boyd ES, Skidmore M, Mitchell AC, Bakermans C, Peters JW (2010) Methanogenesis in subglacial sediments. Environ Microbiol Reports. doi:10.1111/j.1758-2229.2010.00162.xGoogle Scholar
  20. Buffett BA (2000) Clathrate hydrates. Annu Rev Earth Planet Sci 28:477–507CrossRefGoogle Scholar
  21. Bulat S, Alekhina IA, Blot M, Petit JR, de Angelis M, Wagenbach D, Lipenkov VY, Vasilyeva LP, Wloch DM, Raynaud D, Lukin VV (2004) DNA signature of thermophilic bacteria from the aged accretion ice of Lake Vostok, Antarctica: implications for research for life in extreme icy environments. Int J Astrobiol 3:1–12CrossRefGoogle Scholar
  22. Cavicchioli R (2006) Cold-adapted archaea. Nat Rev Microbio 4:331–343CrossRefGoogle Scholar
  23. Chapin FS III, Sturm M, Serreze M, McFadden JP, Key JR, Lloyd AH, McGuire AD, Rupp TS, Lynch AH, Schimel JP, Beringer J, Chapman WL, Epstein HE, Euskirchen ES, Hinzman LD, Jia G, Ping C-L, Tape KD, Thompson CDC, Walker DA, Welker JM (2005) Role of land-surface changes in arctic summer warming. Science 310(5748):657–660PubMedCrossRefGoogle Scholar
  24. Cheng SM, Foght JM (2007) Cultivation-independent and -dependent characterization of Bacteria resident beneath John Evans Glacier. FEMS Microbiol Ecol 59(2):318–30PubMedCrossRefGoogle Scholar
  25. Chillrud SN, Pedrozo FL, Temporetti PF, Planas HL, Froelich PN (1994) Chemical weathering of phosphate and germanium in glacial meltwater streams: effects of subglacial pyrite oxidation. Limnol Oceanogr 39(5):1130–1140CrossRefGoogle Scholar
  26. Christner BC (2002) Incorporation of DNA and protein precursors into macromolecules by bacteria at −15°C. Appl Environ Microbiol 68:6435–6438PubMedCrossRefGoogle Scholar
  27. Christner BC, Mosley-Thompson E, Thompson LG, Zagorodnov V, Sandman K, Reeve JN (2000) Recovery and identification of viable bacteria immured in glaical ice. Icarus 144:479CrossRefGoogle Scholar
  28. Christner BC, Mosley-Thompson E, Thompson LG, Reeve JN (2001) Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environ Microbiol 3:570–577PubMedCrossRefGoogle Scholar
  29. Christner BC, Mikucki JA, Foreman CM, Denson J, Priscu JC (2005) Glacial ice cores: a model system for developing extraterrestrial decontamination protocols. Icarus 174:572–584CrossRefGoogle Scholar
  30. Christner B, Royston-Bishop G, Foreman CM, Arnold BR, Tranter M, Welch KA, Lyons WB, Priscu JC (2006) Limnological conditions in subglacial Lake Vostok, Antarctica. Limnol Oceanogr 51:2485–2501CrossRefGoogle Scholar
  31. Cragg BA, Parkes RJ, Fry JC, Weightman AJ, Rochelle PA, Maxwell JR (1996) Bacterial populations and processes in sediments containing gas hydrates (ODP Leg 146: Cascadia Margin). Earth Planet Sci Lett 139:497–507CrossRefGoogle Scholar
  32. Das SB, Joughin I, Behn MD, Howat IM, King MA, Lizarralde D, Bhatia M (2008) Fracture propagation to the base of the Greenland ice sheet during supraglacial lake drainage. Science 320:778–781PubMedCrossRefGoogle Scholar
  33. Delmotte M, Chappellaz J, Brook EJ, Yiou P, Barnola JM, Goujon C, Raynaud D, Lipenkov VI (2004) Atmospheric methane during the last four glacial-interglacial cycles: rapid changes and their link with Antarctic temperature. J Geophys Res 109. doi: 10.1029/2003JD004417Google Scholar
  34. Dickens GR, Castillo MM, Walker JGC (1997) A blast of gas in the latest Paleocene: simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology 25:259–262PubMedCrossRefGoogle Scholar
  35. Elvert M, Suess E, Whiticar MJ (1999) Anaerobic methane oxidation associated with marine gas hydrates: superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids. Naturewissenschaften 86(6):295–300CrossRefGoogle Scholar
  36. Eugster W, Rouse WR, Pielke RA, Mc Fadden JP, Baldocchi DD, Kittel TGF, Chapin FS III, Liston G, Vidale PL, Vaganov E, Chambers S (2000) Land- atmosphere energy exchange in Arctic tundra and boreal forest: available data and feedbacks to climate. Global Change Biol 6:84–115CrossRefGoogle Scholar
  37. Fairchild IJ, Bradby L, Spiro B (1993) Carbonate diagenesis in ice. Geology 21:901–904CrossRefGoogle Scholar
  38. Foght JM, Aislabie J, Turner S, Brown CE, Ryburn J, Saul DJ, Lawson W (2004) Culturable bacteria in subglacial sediments and ice from two southern hemi- sphere glaciers. Microb Ecol 47:329–340PubMedCrossRefGoogle Scholar
  39. Fountain AG, Walder JS (1998) Water flow through temperate glaciers. Rev Geophys 36:299–328CrossRefGoogle Scholar
  40. Fricker HA, Scambos T, Bindschadler R, Padman L (2007) An active subglacial water system in West Antarctica mapped from space. Science 315:1544–1548PubMedCrossRefGoogle Scholar
  41. Gaidos E, Lanoil B, Thorsteinsson T, Graham A, Skidmore ML, Han S-K, Rust T, Popp B (2004) A viable microbial community in a subglacial volcanic crater lake, Iceland. Astrobiology 4:327–344PubMedCrossRefGoogle Scholar
  42. Gaidos E, Marteinsson V, Thorsteinsson T, Jóhannesson T, Rúnarsson AR, Stefansson A, Glazer B, Lanoil B, Skidmore M, Han S, Miller M, Rusch A, Foo W (2009) An oligarchic microbial assemblage in the anoxic bottom waters of a volcanic subglacial lake. ISME J 3(4):486–97PubMedCrossRefGoogle Scholar
  43. Gilichinsky DA, Wagener S, Vishnevetskaya TA (1995) Permafrost microbiology permafrost and periglacial processes 6(4):281–291CrossRefGoogle Scholar
  44. Gilichinsky D, Rivkina E, Shcherbakova V, Laurinavichuis K, Tiedje J (2003) Supercooled water brines within permafrost – an unknown ecological niche for microorganisms: a model for astrobiology. Astrobiology 3(2):331–341PubMedCrossRefGoogle Scholar
  45. Gilichinsky D, Rivkina E, Bakermans C, Shcherbakova V, Petrovskaya L, Ozerskaya S, Ivanushkina N, Kochkina G, Laurinavichuis K, Pecheritsina S, Fattakhova R, Tiedje JM (2005) Biodiversity of cryopegs in permafrost. FEMS Microbiol Ecol 53(1):117–28PubMedCrossRefGoogle Scholar
  46. Gilichinsky DA, Wilson GS, Friedmann EI, McKay CP, Sletten RS, Rivkina EM, Vishnivetskaya TA, Erokhina LG, Ivanushkina NE, Kochkina GA, Shcherbakova VA, Soina VS, Spirina EV, Vorobyova EA, Fyodorov-Davydov DG, Hallet B, Ozerskaya SM, Sorokovikov VA, Laurinavichyus KS, Shatilovich AV, Chanton JP, Ostroumov VE, Tiedje JM (2007) Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology. Astrobiology 7(2):275–311PubMedCrossRefGoogle Scholar
  47. Hansen AA, Herbert RA, Mikkelsen K, Jensen LL, Kristoffersen T, Tiedje JM, Lomstein BA, Finster KW (2007) Viability, diversity and composition of the bacterial community in a high Arctic permafrost soil from Spitsbergen, northern Norway. Environ Microbiol 9:2870–2884PubMedCrossRefGoogle Scholar
  48. Helmke E, Weyland H (1995) Bacteria in sea ice and underlying water of the eastern Weddell Sea in midwinter. Mar Ecol Prog Ser 117:269–287CrossRefGoogle Scholar
  49. Hesselbo SP, Gröcke DR, Jenkyns HC, Bjerrum CJ, Farrimond PL, Morgans-Bell HS, Green O (2000) Massive dissociation of gas hydrates during a Jurassic oceanic anoxic event. Nature 406:392–395PubMedCrossRefGoogle Scholar
  50. Hodgkins R, Tranter M, Dowdeswell JA (1997) Solute provenance, transport and denudation in a high Arctic glacierized catchment. Hydrol Process 11:1813–1832CrossRefGoogle Scholar
  51. Hodson A, Anesio AM, Tranter M, Fountain A, Osborn M, Priscu JC, Laybourn-Parry J, Sattler B (2008) Glacial ecosystems. Eco Monogr 78:41–67CrossRefGoogle Scholar
  52. Hubbard A, Lawson W, Anderson B, Hubbard B, Blatter H (2004) Evidence for subglacial ponding across Taylor Glacier, Dry Valleys, Antarctica. Ann Glaciol 39:79–84CrossRefGoogle Scholar
  53. IPCC (2007) Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing Team, Pachauri RK, Reisinger A (eds) IPCC, Geneva, Switzerland. pp 104Google Scholar
  54. Jouzel J, Petit JR, Souchez R, Barkov NI, Ya V, Lipenkov D, Raynaud M, Stievenard NI, Vassiliev V, Verbeke VF (1999) More than 200 meters of lake ice above Subglacial Lake Vostok, Antarctica. Science 286(5447):2138–2141PubMedCrossRefGoogle Scholar
  55. Joye SB, Orcutt BN, Boetius A, Montoya JP, Schulz HN, Erickson MJ, Lugo SK (2004) The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps. Chem Geol 205:219–238CrossRefGoogle Scholar
  56. Junge K, Eicken H, Deming JW (2004) Bacterial activity at –2 to –20°C in Arctic Wintertime sea ice. Appl Environ Microbiol 70:550–557PubMedCrossRefGoogle Scholar
  57. Kapitsa KA, Ridley JK, Robin GQ, Siegert MJ, Zotikov IA (1996) A large deep freshwater lake beneath the ice of central East Antarctica. Nature 381:684–686CrossRefGoogle Scholar
  58. Karl DM, Bird DF, Bjorkman K, Houlihan T, Shackelford R, Tupas L (1999) Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science 286:2144–2147PubMedCrossRefGoogle Scholar
  59. Katz MEDK, Pak GR Dickens, Miller KG (1999) The source and fate of massive carbon input during the latest Paleocene thermal maximum. Science 286(5444):1531–1533PubMedCrossRefGoogle Scholar
  60. Kennett JP, Cannariato KG, Hendy IL, Behl RJ (2000) Carbon isotopic evidence for methane hydrate instability during quaternary interstadials. Science 288(5463):128–133PubMedCrossRefGoogle Scholar
  61. Koch K, Knoblauch C, Wagner D (2009) Methanogenic community composition and anaerobic carbon turnover in submarine permafrost sediments of the Siberian Laptev Sea. Environ Microbiol 11(3):657–68PubMedCrossRefGoogle Scholar
  62. Kotsyurbenko OR, Glagolev MV, Nozhevnikova AN, Conrad R (2001) Competition between homoacetogenic bacteria and methanogenic archaea for hydrogen at low temperature. FEMS Microbiol Ecol 38:153–159CrossRefGoogle Scholar
  63. Kvenvolden KA (1988) Methane hydrates and global climate. Global Biogeochem Cycles 2:221–229CrossRefGoogle Scholar
  64. Kvenvolden KA (1999) Potential effects of gas hydrate on human welfare. PNAS 96:3420–3426PubMedCrossRefGoogle Scholar
  65. Lanoil BD, Sassen R, La Duc MT, Sweet ST, Nealson KH (2001) Bacteria and Archaea physically associated with gulf of mexico gas hydrates. Appl Environ Microbiol 67(11):5143–5153PubMedCrossRefGoogle Scholar
  66. Lanoil B, Skidmore M, Priscu JC, Han S, Foo W, Vogel SW, Tulaczyk S, Engelhardt H (2009) Bacteria beneath the West Antarctic ice sheet. Environ Microbiol 11(3):609–15PubMedCrossRefGoogle Scholar
  67. Laucks ML, Sengupta A, Junge K, Davis EJ, Swanson BD (2005) Comparison of psychro-active Arctic marine bacteria and common mesophilic bacteria using surface-enhanced Raman spectroscopy. Appl Spectrosc 10:1222–1228CrossRefGoogle Scholar
  68. Ludwig W, Amiotte-Suchet P, Munhoven G, Probst J-L (1998) Atmospheric CO2 consumption by continental erosion: Present day controls and implications for the last glacial maximum. Global Planet Change 16–17:107–120CrossRefGoogle Scholar
  69. Lütters-Czekalla S (1990) Lithoautotrophic growth of the iron bacterium Gallionella ferruginea with thiosulfate or sulfide as energy source. Archives of Microbiology 154(5):417–421CrossRefGoogle Scholar
  70. Massana R, Murray AE, Preston CM, DeLong EF (1997) Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel. Appl Environ Microbiol 63:50–56PubMedGoogle Scholar
  71. Mikucki JA, Priscu JC (2007) Bacterial diversity associated with Blood Falls, a subglacial outflow from the Taylor Glacier, Antarctica. Appl Environ Microbiol 73(12):4029–39PubMedCrossRefGoogle Scholar
  72. Mikucki JA, Liu Y, Delwiche M, Colwell FS, Boone DR (2003) Isolation of a methanogen from deep marine sediments that contain methane hydrates, and description of Methanoculleus submarinus sp. nov. Appl Environ Microbio 69(6):3311–3316CrossRefGoogle Scholar
  73. Mikucki JA, Foreman CM, Sattler B, Lyons WB, Priscu JC (2004) Geomicrobiology of Blood Falls: an iron-rich saline discharge at the terminus of the Taylor Glacier, Antarctica. Aquat Geochem 10:199–220CrossRefGoogle Scholar
  74. Mikucki JA, Pearson A, Johnston DT, Turchyn AV, Farquhar J, Schrag DP, Anbar AD, Priscu JC, Lee PA (2009) A contemporary microbially maintained subglacial ferrous “ocean”. Science 324(5925):397–400PubMedCrossRefGoogle Scholar
  75. Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167PubMedGoogle Scholar
  76. Moritz RE, Bitz CM, Steig EJ (2002) Dynamics of recent climate change in the Arctic. Science 297:1497–1502PubMedCrossRefGoogle Scholar
  77. Murray AE, Preston CM, Massana R, Taylor LT, Blakis A, Wu K, DeLong EF (1998) Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters near Anvers Island, Antarctica. Appl Environ Microbiol 64:2585–2595PubMedGoogle Scholar
  78. Nauhaus K, Boetius A, Krüger M, Widdel F (2002) In vitro demonstration of anaerobic oxidation of methane coupled to sulfate reduction in sediment from a marine gas hydrate area. Environ Microbiol 4(5):296–305PubMedCrossRefGoogle Scholar
  79. Nemergut DR, Anderson SP, Cleveland CC, Martin AP, Miller AE, Seimon A, Schmidt SK (2007) Microbial community succession in an unvegetated, recently-deglaciated soil. Microb Ecol 53:110–122PubMedCrossRefGoogle Scholar
  80. Norris RD, Röhl U (1999) Carbon cycling and chronology of climate warming during the Paleocene/Eocene transition. Nature 401:775–778CrossRefGoogle Scholar
  81. Overduin P (2007) Russian–German cooperation SYSTEM LAPTEV SEA: the expedition COAST I. Ber Polarforsch Meeresforsch 550:1–39Google Scholar
  82. Panikov NS (2009) Microbial activity in frozen soils. In: Margesin R (ed) Permafrost soils. Springer, Berlin, pp 119–148CrossRefGoogle Scholar
  83. Paterson WSB (1998) The physics of glaciers, 3rd edn. Butterworth-Heinemann, Oxford, UKGoogle Scholar
  84. Poglazova MN, Mitskevich IN, Abyzov SS, Ivanov MV (2001) Microbiological characterization of the accreted ice of subglacial Lake Vostok, Antarctica. Microbiology 70:723–730CrossRefGoogle Scholar
  85. Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298:156–159CrossRefGoogle Scholar
  86. Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. PNAS 101(13):4631–4636PubMedCrossRefGoogle Scholar
  87. Priscu JC, Christner BC (2004) Earth’s icy biosphere. In: Bull AT (ed) Microbial biodiversity and bioprospecting. American Society for Microbiology Press, Washington, DC, pp 130–145Google Scholar
  88. Priscu JC, Adams EE, Lyons WB, Voytek MA, Mogk DW, Brown RL, McKay CP, Takacs CD, Welch KA, Wolf CF, Kirshtein JD, Avci R (1999) Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 286:2141–2144PubMedCrossRefGoogle Scholar
  89. Priscu JC, Tulaczyk S, Studinger M, Kennicutt MC II, Christner B, Foreman C (2008) Antarctic subglacial water: origin, evolution, and ecology. In: Vincent WF, Laybourn-Parry J (eds) Polar lakes and rivers. Oxford University Press, Oxford, pp 119–136CrossRefGoogle Scholar
  90. Rachold V, Bolshiyanov DY, Grigoriev MN, Hubberten HW, Junkers R, Kunitsky VV, Merker F, Overduin P, Schneider W (2007) Nearshore Arctic subsea permafrost in transition. EOS 88:149–150CrossRefGoogle Scholar
  91. Raiswell R (1984) Chemical models of solute acquisition in glacial melt waters. J Glaciol 30(104):49–57Google Scholar
  92. Rivkina EM, Friedmann EI, McKay CP, Gilichinsky DA (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol 66:3230–3233PubMedCrossRefGoogle Scholar
  93. Roberts MJ (2005) Jokulhlaups: a reassessment of floodwater flow through glaciers. Re Geophys 43:Art. No. RG1002Google Scholar
  94. Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101PubMedCrossRefGoogle Scholar
  95. Sassen R, MacDonald IR, Guinasso NL Jr, Joye S, Requiejo AG, Sweet ST, Alca’a-Herrera J, DeFreitas DA, Schink DR (1998) Bacterial methane oxidation in sea-floor gas hydrate: significance to life in extreme environments. Geology 26(9):851–854CrossRefGoogle Scholar
  96. Schlesinger WH (1997) Biogeochemistry: an analysis of global change, 2nd edn. Academic, New YorkGoogle Scholar
  97. Sharp M, Tranter M, Brown GH, Skidmore M (1995) Rates of chemical denudation and CO2 drawdown in a glacier-covered alpine catchment. Geology 23:61–64CrossRefGoogle Scholar
  98. Sharp M, Parkes J, Cragg B, Fairchild IJ, Lamb H, Tranter M (1999) Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling. Geology 27:107–110CrossRefGoogle Scholar
  99. Shi T, Reeves RH, Gilichinsky DA, Friedmann EI (1997) Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing. Microb Ecol 33:169–179PubMedCrossRefGoogle Scholar
  100. Siegert MJ (2005) Lakes beneath the ice sheet: the occurrence, analysis, and future exploration of Lake Vostok and other Antarctic subglacial lakes. Annu Rev Earth Planet Sci 33:215–245CrossRefGoogle Scholar
  101. Siegert MJ, Ellis-Evans JC, Tranter M, Mayer C, Petit JR, Salamatin A, Priscu JC (2001) Physical, chemical, and biological processes in Lake Vostok and other Antarctic subglacial lakes. Nature 414:603–609PubMedCrossRefGoogle Scholar
  102. Siegert MJ, Carter S, Tabacco I, Popov S, Blankenship DD (2005) A revised inventory of Antarctic subglacial lakes. Antarctic Sci 17:453–460CrossRefGoogle Scholar
  103. Skidmore ML, Sharp MJ (1999) Drainage system behaviour of a High-Arctic polythermal glacier. Annals Glaciol 28:209–215CrossRefGoogle Scholar
  104. Skidmore ML, Foght JM, Sharp MJ (2000) Microbial life beneath a high arctic glacier. Appl Environ Microbiol 66:3214–3220PubMedCrossRefGoogle Scholar
  105. Skidmore M, Anderson SP, Sharp M, Foght JM, Lanoil BD (2005) Comparison of microbial community compositions of two subglacial environments reveals a possible role for microbes in chemical weathering processes. Appl Environ Microbiol 71:6986–6997PubMedCrossRefGoogle Scholar
  106. Skidmore M, Tranter M, Tulaczyk S, Lanoil BD (2009) Hydrochemistry of ice stream beds – evaporitic or microbial effects? Hydrol Process 24:517–523Google Scholar
  107. Sloan ED (2003) Fundamental principles and applications of natural gas hydrates. Nature 426:353–363PubMedCrossRefGoogle Scholar
  108. Smith BE, Fricker HA, Joughin I, Tulaczyk S (2009) An inventory of active subglacial lakes in Antarctica detected by ICESat (2003–2008). J Glaciol 55:573–595CrossRefGoogle Scholar
  109. Spirina E, Cole J, Chai B, Gilichinsky D, Tiedje J (2003) High throughput approach to study ancient microbial phylogenetic diversity in permafrost as a terrestrial model of Mars. Astrobiology 2:542–543Google Scholar
  110. Steven B, Niederberger TD, Whyte LG (2009) Bacterial and archaeal diversity in permafrost. In: Margesin R (ed) Permafrost soils. Springer, Berlin, pp 59–72CrossRefGoogle Scholar
  111. Takai K, Campbell BJ, Cary SC, Suzuki M, Oida H, Nunoura T, Hirayama H, Nakagawa S, Suzuki Y, Inagaki F, Horikoshi K (2005) Enzymatic and genetic characterization of carbon and energy metabolisms by deep-sea hydrothermal chemolithoautotrophic isolates of Epsilonproteobacteria. Appl Enviro Microbiol 71(11):7310–7320CrossRefGoogle Scholar
  112. Tranter M (2003) Chemical weathering in glacial and proglacial environments. In: Drever JI (ed) Treatise on geochemistry, vol 5. Oxford, Elsevier-Pergamon, pp 189–205Google Scholar
  113. Tranter M, Brown G, Raiswell R, Sharp M, Gurnell A (1993) A conceptual model of solute acquisition by Alpine glacial meltwaters. J Glaciol 39:573–581Google Scholar
  114. Tranter M, Brown GH, Hodson A, Gurnell AM, Sharp M (1994) Variations in the nitrate concentration of glacial runoff in alpine and sub-polar environments. Int Assoc Hydrolog Sci Pub 223:299–310Google Scholar
  115. Tranter M, Brown GH, Hosdson AJ, Gurnell AM (1998) Hydrochemistry as an indicator of subglacial drainage system structure: a comparison of alpine and sub-polar environments. Hydrol Proces 10(4):541–556CrossRefGoogle Scholar
  116. Tranter M, Huybrechts P, Munhoven G, Sharp MJ, Brown GH, Jones IW, Hodson AJ, Hodgkins R, Wadham JL (2002) Glacial bicarbonate, sulphate and base cation fluxes during the last glacial cycle, and their potential impact on atmospheric CO2. Chem Geol 190:33–44CrossRefGoogle Scholar
  117. Tranter M, Skidmore M, Wadham JL (2005) Hydrological controls on microbial communities in subglacial environments. Hydrol Process 19:995–998CrossRefGoogle Scholar
  118. van Everdingen R (1998) Multi-language glossary of permafrost and related ground-ice terms. National Snow and Ice Data Center/World Data Center for Glaciology, Boulder, COGoogle Scholar
  119. Vishnivetskaya T, Kathariou S, McGrath J, Gilichinsky DA, Tiedje JM (2000) Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments. Extremophiles 4:165–173PubMedCrossRefGoogle Scholar
  120. Vorobyova E, Soina V, Gorlenko M, Minkovskaya N, Zalinova N, Mamukelashvili A, Gilichinsky D, Rivkina E, Vishnivetskaya T (1997) The deep cold biosphere: facts and hypothesis. FEMS Microbiol Rev 20:277–290CrossRefGoogle Scholar
  121. Wadham JL, Tranter M, Dowdeswell JA (2000) Hydrochemistry of meltwaters draining a polythermal-based, high-Arctic glacier, south Svalbard: II. Winter and early spring. Hydrol Process 14:1767–1786CrossRefGoogle Scholar
  122. Wadham JL, Bottrell SH, Tranter M, Raiswell R (2004) Stable isotope evidence for microbial sulphate reduction at the bed of a polythermal high Arctic glacier. Earth Planet Sci Lett 219:341–355CrossRefGoogle Scholar
  123. Wadham JL, Tranter M, Tulaczyk S, Sharp M (2008) Subglacial methanogenesis: a potential climatic amplifier? Global Biogeochem Cycles 22, doi: 10.1111/j.1758-2229.2010.00162.xGoogle Scholar
  124. Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin FS III (2006) Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443:71–75PubMedCrossRefGoogle Scholar
  125. Walter KM, Edwards M, Grosse G, Zimov SA, Stuart Chapin III F (2007) Thermokarst lakes as a source of atmospheric CH4 during the last deglaciation. Science 318:633–636PubMedCrossRefGoogle Scholar
  126. Waseda A (1998) Organic carbon content, bacterial methanogenesis, and accumulation processes of gas hydrates in marine sediments. Geochem Jour 32:143–157CrossRefGoogle Scholar
  127. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci 95:6578–6583PubMedCrossRefGoogle Scholar
  128. Willerslev E, Cappellini E, Boomsma W, Nielsen R, Hebsgaard MB, Brand TB, Hofreiter M, Bunce M, Poinar HN, Dahl-Jensen D, Johnsen S, Steffensen JP, Bennike O, Schwenninger J-L, Nathan R, Armitage S, de Hoog C-J, Alfimov V, Christl M, Beer J, Muscheler R, Barker J, Sharp M, Penkman KEH, Haile J, Taberlet P, Gilbert MTP, Casoli A, Campani E, Collins MJ (2007) Ancient biomolecules from deep ice cores reveal a forested southern Greenland. Science 317(5834):111PubMedCrossRefGoogle Scholar
  129. Wingham DJ, Siegert MJ, Shepherd A, Muir AS (2006) Rapid discharge connects Antarctic subglacial lakes. Nature 440:1033–1036PubMedCrossRefGoogle Scholar
  130. Yershov ED (1998) General geocryology. Cambridge University Press, Cambridge, 580 ppCrossRefGoogle Scholar
  131. Zhang T, Barry RG, Knowles K, Heginbottom JA, Brown J (1999) Statistics and characteristics of permafrost and ground- ice distribution in the northern hemisphere. Polar Geogr 12:119–131Google Scholar
  132. Zimov SA, Schuur EAG, Chapin FS III (2006) Permafrost and the global carbon budget. Science 312:1612–1613PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • Jill A. Mikucki
    • 1
  • S. K. Han
    • 2
  • Brian D. Lanoil
    • 2
  1. 1.Department of Earth SciencesDartmouth CollegeHanoverUSA
  2. 2.Department of Biological SciencesUniversity of AlbertaEdmontonCanada

Personalised recommendations