Advertisement

Versatile Solidified Media for Growth of Extremophiles

  • Shigeru Deguchi

Introduction

Solidified media are indispensable in various aspects of microbiological research (Codner 1969; Madigan et al. 1997; Zengler 2009). For solid cultures of mesophilic microorganisms, agar is commonly used as a solidifying agent. It is a nonionic polysaccharide consisting mainly of d-galactose and 3,6-anhydro-l-galactose and is produced by sea-weeds (Lahaye and Rochas 1991). Ease of the handling, resistance to enzymatic degradation by most microorganisms, and transparency of solidified plates make agar an ideal solidifying agent (Hashsham 2007), and agar-supported media have been used essentially unchanged since they were first introduced in the late nineteenth century (Codner 1969; Madigan et al. 1997; Zengler 2009).

The situation is very different when it comes to culturing extremophiles on solidified media. For example, agar media are not suitable for culturing thermophiles and hyperthermophiles because the solidification of agar is thermoreversible at around 50–60°C...

Keywords

Bacterial Cellulose Solid Culture Geobacillus Stearothermophilus Salt Removal Mesophilic Microorganism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Baross JA (1995) Isolation, growth, and maintenance of hyperthermophiles. In: Robb FT, Place AR, Sowers KR, Schreier HJ, DasSarma S, Fleischman EM (eds) Archaea: a laboratory manual: thermophiles. Cold Spring Harbor Laboratory Press, Plainview, pp 15–23Google Scholar
  2. Chui MM, Phillips RJ, McCarthy MJ (1995) Measurement of the porous microstructure of hydrogels by nuclear magnetic resonance. J Colloid Interface Sci 174:336–344CrossRefGoogle Scholar
  3. Codner RC (1969) Solid and solidified growth media in microbiology. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 1. Academic, London, pp 427–454Google Scholar
  4. Connon SA, Giovannoni SJ (2002) High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol 68:3878–3885PubMedCrossRefGoogle Scholar
  5. Deguchi S, Tsujii K (2002) Flow cell for in situ optical microscopy in water at high temperatures and pressures up to supercritical state. Rev Sci Instrum 73:3938–3941CrossRefGoogle Scholar
  6. Deguchi S, Tsujii K, Horikoshi K (2006) Cooking cellulose in hot and compressed water. Chem Commun 2006:3293–3295CrossRefGoogle Scholar
  7. Deguchi S, Tsudome M, Shen Y, Konishi S, Tsujii K, Ito S, Horikoshi K (2007) Preparation and characterisation of nanofibrous cellulose plate as a new solid support for microbial culture. Soft Matter 3:1170–1175CrossRefGoogle Scholar
  8. Deguchi S, Tsujii K, Horikoshi K (2008a) Effect of acid catalyst on structural transformation and hydrolysis of cellulose in hydrothermal conditions. Green Chem 10:623–626CrossRefGoogle Scholar
  9. Deguchi S, Tsujii K, Horikoshi K (2008b) Crystalline-to-amorphous transformation of cellulose in hot and compressed water and its implications for hydrothermal conversion. Green Chem 10:191–196CrossRefGoogle Scholar
  10. Deming JW, Baross JA (1986) Solid medium for culturing black smoker bacteria at temperatures to 120°C. Appl Environ Microbiol 51:238–243PubMedGoogle Scholar
  11. Hashsham SA (2007) Culture techniques. In: Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM, Snyder LR (eds) Methods for general and molecular microbiology. ASM, Washington, pp 270–285Google Scholar
  12. Hattori M, Shimaya Y, Saito M (1998a) Solubility and dissolved cellulose in aqueous calcium- and sodium-thiocyanate solution. Polym J 30:49–55CrossRefGoogle Scholar
  13. Hattori M, Shimaya Y, Saito M (1998b) Structural changes in wood pulp treated by 55 wt% aqueous calcium thiocyanate solution. Polym J 30:37–42CrossRefGoogle Scholar
  14. Hattori M, Koga T, Shimaya Y, Saito M (1998c) Aqueous calcium thiocyanate solution as a cellulose solvent. Structure and interactions with cellulose. Polym J 30:43–48CrossRefGoogle Scholar
  15. Hattori M, Shimaya Y, Saito M, Okajima K (1999) Gelation and gel structure of cellulose/aqueous calcium thiocyanate solution system. Sen-i Gakkaishi 55:179–186CrossRefGoogle Scholar
  16. Johnson DB (1995) Selective solid media for isolating and enumerating acidophilic bacteria. J Microbiol Meth 23:205–218CrossRefGoogle Scholar
  17. Kang KS, Veeder GT, Mirrasoul PJ, Kaneko T, Cottrell IW (1982) Agar-like polysaccharide produced by a Pseudomonas species: production and basic properties. Appl Environ Microbiol 43:1086–1091PubMedGoogle Scholar
  18. Kelly DP, Harrison AP (1989) Genus. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Thiobacillus beijerinck. Bergey’s manual of systematic bacteriology, vol 3. Springer, New York, pp 1842–1858Google Scholar
  19. Kitada M, Dobashi Y, Horikoshi K (1989) Enzymatic properties of purified d-xylose isomerase from a thermophilic alkalophile, Bacillus TX-3. Agric Biol Chem 53:1461–1468CrossRefGoogle Scholar
  20. Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRefGoogle Scholar
  21. Kuga S (1980a) New cellulose gel for chromatography. J Chromatogr 195:221–230CrossRefGoogle Scholar
  22. Kuga S (1980b) The porous structure of cellulose gel regenerated from calcium thiocyanate solution. J Colloid Interface Sci 77:413–417CrossRefGoogle Scholar
  23. Lahaye M, Rochas C (1991) Chemical structure and physico-chemical properties of agar. Hydrobiologia 221:137–148CrossRefGoogle Scholar
  24. Lin CC, Casida LE Jr (1984) Gelrite as a gelling agent in media for the growth of thermophilic microorganisms. Appl Environ Microbiol 47:427–429PubMedGoogle Scholar
  25. Macnab RM (1996) Flagella and motility. In: Neidhardt FC (ed) Escherichia coli and Salmonella: cellular and molecular biology, vol 1. ASM, Washington, pp 123–145Google Scholar
  26. Madigan MT, Martinko JM, Parker J (1997) Brock biology of microorganisms. Prentice Hall, Upper Saddle RiverGoogle Scholar
  27. Miyoshi E, Nishinari K (1999) Effects of sugar on the sol-gel transition in gellan gum aqueous solutions. Prog Colloid Polym Sci 114:83–91CrossRefGoogle Scholar
  28. Miyoshi E, Takaya T, Nishinari K (1998) Effects of glucose, mannose and konjac glucomannan on the gel-sol transition in gellan gum aqueous solutions by rheology and dsc. Polym Gels Networks 6:273–290CrossRefGoogle Scholar
  29. Moorhouse R, Colegrove GT, Sanford PA, Baird J, Kang KS (1981) Ps-60: a new gel-forming polysaccharide. In: Brand DA (ed) Solution properties of polysaccharides. American Chemical Society, Washington, pp 111–124CrossRefGoogle Scholar
  30. Mukai S, Deguchi S, Tsujii K (2006) A high-temperature and -pressure microscope cell to observe colloidal behaviors in subcritical and supercritical water: Brownian motion of colloids near a wall. Colloid Surf A 282–283:483–488CrossRefGoogle Scholar
  31. Rappé MS, Connon SA, Vergin KL, Giovannoni SJ (2002) Cultivation of the ubiquitous sar11 marine bacterioplankton clade. Nature 418:630–633PubMedCrossRefGoogle Scholar
  32. Robb FT, Place AR (1995) In: Robb FT, Place AR, Sowers KR, Schreier HJ, DasSarma S, Fleischman EM (eds) Archaea: a laboratory manual: thermophiles. Cold Spring Harbor Laboratory Press, PlainviewGoogle Scholar
  33. Shungu D, Valiant M, Tutlane V et al (1983) Gelrite as an agar substitute in bacteriological media. Appl Environ Microbiol 46:540–845Google Scholar
  34. Takai K, Nakamura K, Toki T et al (2008) Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci USA 105:10949–10954PubMedCrossRefGoogle Scholar
  35. Tsudome M, Deguchi S, Tsujii K, Ito S, Horikoshi K (2009) Versatile solidified nanofibrous cellulose-containing media for growth of extremophiles. Appl Environ Microbiol 75:4616–4619PubMedCrossRefGoogle Scholar
  36. Watase M, Nishinari K (1987) Dynamic viscoelasticity and anomalous thermal behaviour of concentrated agarose gels. Makromol Chem 188:1177–1186CrossRefGoogle Scholar
  37. Williams RA, Smith KE, Welch SG, Micallef J, Sharp RJ (1995) DNA relatedness of Thermus strains, description of Thermus brockianus sp. nov., and proposal to reestablish Thermus thermophilus (Oshima and Imahori). Int J Syst Evol Microbiol 45:495–499Google Scholar
  38. Zengler K (2009) Central role of the cell in microbial ecology. Microbiol Mol Biol Rev 73:712–729PubMedCrossRefGoogle Scholar
  39. Zengler K, Toledo G, Rappé M, Elkins J, Mathur EJ, Short JM, Keller M (2002) Cultivating the uncultured. Proc Natl Acad Sci USA 99:15681–15686PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.Soft Matter and Extremophiles Research Team, Institute of BiogeosciencesJapan Agency for Marine-Earth Science and Technology (JAMSTEC)YokosukaJapan

Personalised recommendations