Skip to main content

Versatile Solidified Media for Growth of Extremophiles

  • Reference work entry
Extremophiles Handbook

Introduction

Solidified media are indispensable in various aspects of microbiological research (Codner 1969; Madigan et al. 1997; Zengler 2009). For solid cultures of mesophilic microorganisms, agar is commonly used as a solidifying agent. It is a nonionic polysaccharide consisting mainly of d-galactose and 3,6-anhydro-l-galactose and is produced by sea-weeds (Lahaye and Rochas 1991). Ease of the handling, resistance to enzymatic degradation by most microorganisms, and transparency of solidified plates make agar an ideal solidifying agent (Hashsham 2007), and agar-supported media have been used essentially unchanged since they were first introduced in the late nineteenth century (Codner 1969; Madigan et al. 1997; Zengler 2009).

The situation is very different when it comes to culturing extremophiles on solidified media. For example, agar media are not suitable for culturing thermophiles and hyperthermophiles because the solidification of agar is thermoreversible at around 50–60°C...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baross JA (1995) Isolation, growth, and maintenance of hyperthermophiles. In: Robb FT, Place AR, Sowers KR, Schreier HJ, DasSarma S, Fleischman EM (eds) Archaea: a laboratory manual: thermophiles. Cold Spring Harbor Laboratory Press, Plainview, pp 15–23

    Google Scholar 

  • Chui MM, Phillips RJ, McCarthy MJ (1995) Measurement of the porous microstructure of hydrogels by nuclear magnetic resonance. J Colloid Interface Sci 174:336–344

    Article  CAS  Google Scholar 

  • Codner RC (1969) Solid and solidified growth media in microbiology. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 1. Academic, London, pp 427–454

    Google Scholar 

  • Connon SA, Giovannoni SJ (2002) High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol 68:3878–3885

    Article  PubMed  CAS  Google Scholar 

  • Deguchi S, Tsujii K (2002) Flow cell for in situ optical microscopy in water at high temperatures and pressures up to supercritical state. Rev Sci Instrum 73:3938–3941

    Article  CAS  Google Scholar 

  • Deguchi S, Tsujii K, Horikoshi K (2006) Cooking cellulose in hot and compressed water. Chem Commun 2006:3293–3295

    Article  Google Scholar 

  • Deguchi S, Tsudome M, Shen Y, Konishi S, Tsujii K, Ito S, Horikoshi K (2007) Preparation and characterisation of nanofibrous cellulose plate as a new solid support for microbial culture. Soft Matter 3:1170–1175

    Article  CAS  Google Scholar 

  • Deguchi S, Tsujii K, Horikoshi K (2008a) Effect of acid catalyst on structural transformation and hydrolysis of cellulose in hydrothermal conditions. Green Chem 10:623–626

    Article  CAS  Google Scholar 

  • Deguchi S, Tsujii K, Horikoshi K (2008b) Crystalline-to-amorphous transformation of cellulose in hot and compressed water and its implications for hydrothermal conversion. Green Chem 10:191–196

    Article  CAS  Google Scholar 

  • Deming JW, Baross JA (1986) Solid medium for culturing black smoker bacteria at temperatures to 120°C. Appl Environ Microbiol 51:238–243

    PubMed  CAS  Google Scholar 

  • Hashsham SA (2007) Culture techniques. In: Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM, Snyder LR (eds) Methods for general and molecular microbiology. ASM, Washington, pp 270–285

    Google Scholar 

  • Hattori M, Shimaya Y, Saito M (1998a) Solubility and dissolved cellulose in aqueous calcium- and sodium-thiocyanate solution. Polym J 30:49–55

    Article  CAS  Google Scholar 

  • Hattori M, Shimaya Y, Saito M (1998b) Structural changes in wood pulp treated by 55 wt% aqueous calcium thiocyanate solution. Polym J 30:37–42

    Article  CAS  Google Scholar 

  • Hattori M, Koga T, Shimaya Y, Saito M (1998c) Aqueous calcium thiocyanate solution as a cellulose solvent. Structure and interactions with cellulose. Polym J 30:43–48

    Article  CAS  Google Scholar 

  • Hattori M, Shimaya Y, Saito M, Okajima K (1999) Gelation and gel structure of cellulose/aqueous calcium thiocyanate solution system. Sen-i Gakkaishi 55:179–186

    Article  CAS  Google Scholar 

  • Johnson DB (1995) Selective solid media for isolating and enumerating acidophilic bacteria. J Microbiol Meth 23:205–218

    Article  Google Scholar 

  • Kang KS, Veeder GT, Mirrasoul PJ, Kaneko T, Cottrell IW (1982) Agar-like polysaccharide produced by a Pseudomonas species: production and basic properties. Appl Environ Microbiol 43:1086–1091

    PubMed  CAS  Google Scholar 

  • Kelly DP, Harrison AP (1989) Genus. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Thiobacillus beijerinck. Bergey’s manual of systematic bacteriology, vol 3. Springer, New York, pp 1842–1858

    Google Scholar 

  • Kitada M, Dobashi Y, Horikoshi K (1989) Enzymatic properties of purified d-xylose isomerase from a thermophilic alkalophile, Bacillus TX-3. Agric Biol Chem 53:1461–1468

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Kuga S (1980a) New cellulose gel for chromatography. J Chromatogr 195:221–230

    Article  CAS  Google Scholar 

  • Kuga S (1980b) The porous structure of cellulose gel regenerated from calcium thiocyanate solution. J Colloid Interface Sci 77:413–417

    Article  CAS  Google Scholar 

  • Lahaye M, Rochas C (1991) Chemical structure and physico-chemical properties of agar. Hydrobiologia 221:137–148

    Article  CAS  Google Scholar 

  • Lin CC, Casida LE Jr (1984) Gelrite as a gelling agent in media for the growth of thermophilic microorganisms. Appl Environ Microbiol 47:427–429

    PubMed  CAS  Google Scholar 

  • Macnab RM (1996) Flagella and motility. In: Neidhardt FC (ed) Escherichia coli and Salmonella: cellular and molecular biology, vol 1. ASM, Washington, pp 123–145

    Google Scholar 

  • Madigan MT, Martinko JM, Parker J (1997) Brock biology of microorganisms. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Miyoshi E, Nishinari K (1999) Effects of sugar on the sol-gel transition in gellan gum aqueous solutions. Prog Colloid Polym Sci 114:83–91

    Article  CAS  Google Scholar 

  • Miyoshi E, Takaya T, Nishinari K (1998) Effects of glucose, mannose and konjac glucomannan on the gel-sol transition in gellan gum aqueous solutions by rheology and dsc. Polym Gels Networks 6:273–290

    Article  CAS  Google Scholar 

  • Moorhouse R, Colegrove GT, Sanford PA, Baird J, Kang KS (1981) Ps-60: a new gel-forming polysaccharide. In: Brand DA (ed) Solution properties of polysaccharides. American Chemical Society, Washington, pp 111–124

    Chapter  Google Scholar 

  • Mukai S, Deguchi S, Tsujii K (2006) A high-temperature and -pressure microscope cell to observe colloidal behaviors in subcritical and supercritical water: Brownian motion of colloids near a wall. Colloid Surf A 282–283:483–488

    Article  Google Scholar 

  • Rappé MS, Connon SA, Vergin KL, Giovannoni SJ (2002) Cultivation of the ubiquitous sar11 marine bacterioplankton clade. Nature 418:630–633

    Article  PubMed  Google Scholar 

  • Robb FT, Place AR (1995) In: Robb FT, Place AR, Sowers KR, Schreier HJ, DasSarma S, Fleischman EM (eds) Archaea: a laboratory manual: thermophiles. Cold Spring Harbor Laboratory Press, Plainview

    Google Scholar 

  • Shungu D, Valiant M, Tutlane V et al (1983) Gelrite as an agar substitute in bacteriological media. Appl Environ Microbiol 46:540–845

    Google Scholar 

  • Takai K, Nakamura K, Toki T et al (2008) Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci USA 105:10949–10954

    Article  PubMed  CAS  Google Scholar 

  • Tsudome M, Deguchi S, Tsujii K, Ito S, Horikoshi K (2009) Versatile solidified nanofibrous cellulose-containing media for growth of extremophiles. Appl Environ Microbiol 75:4616–4619

    Article  PubMed  CAS  Google Scholar 

  • Watase M, Nishinari K (1987) Dynamic viscoelasticity and anomalous thermal behaviour of concentrated agarose gels. Makromol Chem 188:1177–1186

    Article  Google Scholar 

  • Williams RA, Smith KE, Welch SG, Micallef J, Sharp RJ (1995) DNA relatedness of Thermus strains, description of Thermus brockianus sp. nov., and proposal to reestablish Thermus thermophilus (Oshima and Imahori). Int J Syst Evol Microbiol 45:495–499

    CAS  Google Scholar 

  • Zengler K (2009) Central role of the cell in microbial ecology. Microbiol Mol Biol Rev 73:712–729

    Article  PubMed  CAS  Google Scholar 

  • Zengler K, Toledo G, Rappé M, Elkins J, Mathur EJ, Short JM, Keller M (2002) Cultivating the uncultured. Proc Natl Acad Sci USA 99:15681–15686

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Deguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this entry

Cite this entry

Deguchi, S. (2011). Versatile Solidified Media for Growth of Extremophiles. In: Horikoshi, K. (eds) Extremophiles Handbook. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53898-1_36

Download citation

Publish with us

Policies and ethics