Contributions of Large-Scale DNA Sequencing Efforts to the Understanding of Low Temperature Piezophiles

  • Douglas H. BartlettEmail author
  • Ian Kerman
Reference work entry


Pressure is an important environmental thermodynamic parameter that influences chemical equilibria and kinetics both inside and outside of organisms. Within the known biosphere, pressure extends three orders of magnitude from atmospheric pressure (1 atmosphere = 0.101325 megapascals [MPa]) at sea level to 90–110 MPa in the deepest ocean trenches. In stratified waters, deep-sea microbial communities display optimal productivity at in situ pressure (Tamburini et al. 2009). However, pressure effects on microbes are complex. Seawater microcosm studies indicate that even moderate pressures (40 MPa) can effect growth and cell size in a species-specific fashion (Grossart and Gust 2009). In this chapter, the focus is on high-throughput sequence analyses of microbial communities and species with a particular focus on the ribosome. Those interested in learning more about the phylogenetics and adaptations of low-temperature, piezophilic (high-pressure-adapted) microbes should...


Particulate Organic Carbon High Hydrostatic Pressure Metagenomic Data Comparison Strain Pressure Adaptation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



D.H. Bartlett is grateful to the National Science Foundation for support (EF0827051 and EF0801973).


  1. Allen EE, Bartlett DH (2002) Structure and regulation of the omega-3 polyunsaturated fatty acid synthase from the deep-sea bacterium Photobacterium profundum strain SS9. Microbiology 148:1903–1913PubMedGoogle Scholar
  2. Bartlett DH (2002a) Pressure effects on in vivo microbial processes. Biochim Biophys Acta 1595:367–81PubMedCrossRefGoogle Scholar
  3. Bartlett DH (2002b) Pressure effects on in vivo microbial processes. Biochem Biophys Acta 1595:367–381PubMedCrossRefGoogle Scholar
  4. Bartlett DH, Lauro FM, Eloe EA (2007) Microbial adaptation to high pressure. In: Gerday C, Glandsdorf N (eds) Physiology and biochemistry of extremophiles. American Society for Microbiology Press, Washington, DC, pp 333–348Google Scholar
  5. Brimacombe R (1995) The structure of ribosomal RNA: a three-dimensional jigsaw puzzle. Eur J Biochem 230:365–383PubMedCrossRefGoogle Scholar
  6. Brown MV, Philip GK, Bunge JA, Smith MC, Bissett A, Lauro FM, Fuhrman JA, Donachie SP (2009) Microbial community structure in the North Pacific ocean. ISME J 3:1374–1386PubMedCrossRefGoogle Scholar
  7. Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayn JD, Kerlavage AR, Dougherty BA, Tomb J-F, Adams MD, Reich CI, Overbeek R, Kirkness EF, Weinstock KG, Merrick JM, Glodek A, Scott JL, Geoghagen NSM, Weidman JF, Fuhrmann JL, Nguyen D, Utterback TR, Kelley JM, Peterson JD, Sadow PW, Hanna MC, Cotton MD, Roberts KM, Hurst MA, Kaine BP, Borodovsky M, Klenk H-P, Fraser CM, Smith HO, Woese CR, Venter JC (1996) Complete genome sequence of the methanogenic archaeon. Methanococcus jannaschii. Science 273:1058–1073PubMedCrossRefGoogle Scholar
  8. Campanaro S, Treu L, Valle G (2008) Protein evolution in deep sea bacteria: an analysis of amino acids substitution rates. BMC Evol. Biol. 8:e313Google Scholar
  9. Campanaro S, Vezzi A, Vitulo N, Lauro FM, D’Angeo M, Simonato F, Cestaro A, Malacrida G, Bertoloni G, Valle G, Bartlett DH (2005) Laterally transferred elements and high pressure adaptation in Photobacterium profundum strains. BMC Genom 6:122Google Scholar
  10. Cannone JJ, Subramanian S, Schnare MN, Collett JR, D’Souza LM, Du Y, Feng B, Lin N, Madabusi LV, Müller KM, Pande N, Shang Z, Yu N, Gutell RR (2002) The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinform 3:2Google Scholar
  11. Chikuma S, Kasahara R, Kato C, Tamegai H (2007) Bacterial adaptation to high pressure: a respiratory system in the deep-sea bacterium Shewanella violacea DSS12. FEMS Microbiol Lett 267:108–112PubMedCrossRefGoogle Scholar
  12. DeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard NU, Martinez A, Sullivan MB, Edwards R, Brito BR, Chisholm SW, Karl DM (2006) Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311:496–503PubMedCrossRefGoogle Scholar
  13. Eloe EA, Lauro FM, Vogel RF, Bartlett DH (2008) The deep-sea bacterium Photobacterium profundum SS9 is capable of swimming and swarming at high pressure. Appl Environ Microbiol 74:6298–6305PubMedCrossRefGoogle Scholar
  14. Giuliodori AM, Brandi A, Gualerzi CO, Pon CL (2004) Preferential translation of cold-shock mRNAs during cold adaptation. RNA 10:265–276PubMedCrossRefGoogle Scholar
  15. Goldberg SM, Johnson J, Busam D, Feldblyum T, Ferriera S, Friedman R, Halpern A, Khouri H, Kravitz SA, Lauro FM, Li K, Rogers YH, Strausberg R, Sutton G, Tallon L, Thomas T, Venter E, Frazier M, Venter JC (2006) A Sanger/pyrosequencing hybrid approach for the generation of high-quality draft assemblies of marine microbial genomes. Proc Natl Acad Sci USA 103:11240–11245PubMedCrossRefGoogle Scholar
  16. Gross M, Jaenicke R (1990) Pressure-induced dissociation of tight couple ribosomes. FEBS Lett 267:239–241PubMedCrossRefGoogle Scholar
  17. Grossart HP, Gust G (2009) Hydrostatic pressure affects physiology and community structure of marine bacteria during settling to 4, 000: an experimental approach. Mar Ecol Prog Ser 390:97–104CrossRefGoogle Scholar
  18. Gu S-Q, Peske F, Wieden H-J, Rodnina MV, Wintermeyer W (2003) The signal recognition particle binds to protein L23 at the peptide exit of the Escherichia coli ribosome. RNA 9:566–573PubMedCrossRefGoogle Scholar
  19. Ivars-Martinez E, Martin-Cuadrado AB, D’Auria G, Mira A, Ferriera S, Johnson J, Friedman R, Rodriguez-Valera F (2008) Comparative genomics of two ecotypes of the marine planktonic copiotroph Alteromonas macleodii suggests alternative lifestyles associated with different kinds of particulate organic matter. ISME J 2:1194–1212PubMedCrossRefGoogle Scholar
  20. Konstantinidis KT, Braff J, Karl DM, DeLong EF (2009) Comparative metagenomic analysis of a microbial community residing at a depth of 4, 000 meters at station ALOHA in the North Pacific subtropical gyre. Appl Environ Microbiol 75:5345–5355PubMedCrossRefGoogle Scholar
  21. Landau JV (1967) Induction, transcription, and translation in Escherichia coli: a hydrostatic pressure study. Biochem Biophys Acta 149:506–512PubMedCrossRefGoogle Scholar
  22. Lara E, Moreira D, Vereshchaka A, Lopez-Garcia P (2009) Pan-oceanic distribution of new highly diverse clades of deep-sea diplonemids. Environ Microbiol 11:47–55PubMedCrossRefGoogle Scholar
  23. Lauro FM, Bartlett DH (2008) Prokaryotic lifestyles in deep-sea habitats. Extremophiles 12:15–25PubMedCrossRefGoogle Scholar
  24. Lauro FM, Chastain RA, Blankenship LE, Yayanos AA, Bartlett DH (2007) The unique 16S rRNA genes of piezophiles reflect both phylogeny and adaptation. Appl Environ Microbiol 73:838–845PubMedCrossRefGoogle Scholar
  25. Lauro FM, Tran K, Vezzi A, Vitulo N, Valle G, Bartlett DH (2008) Large-scale transposon mutagenesis of Photobacterium profundum SS9 reveals new genetic loci important for growth at low temperature and high pressure. J Bacteriol 190:1699–1709PubMedCrossRefGoogle Scholar
  26. Markowitz VM, Korzeniewski F, Palaniappan K, Szeto E, Werner G, Padki A, Zhao X, Dubchak I, Hugenholtz P, Anderson I, Lykidis A, Mavromatis K, Ivanova N, Kyrpides NC (2006) The integrated microbial genomes (IMG) system. Nuc Acids Res 34:D344–348CrossRefGoogle Scholar
  27. Martín-Cuadrado A, López-García P, Alba JC, Moreira D, Monticelli L, Strittmatter A, Gottschalk G, Rodríguez-Valera F (2007) Metagenomics of the deep mediterranean, a warm bathypelagic habitat. PLoS ONE 2:e914Google Scholar
  28. Methé BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang X, Moult J, Madupu R, Nelson WC, Dodson RJ, Brinkac LM, Daugherty SC, Durkin AS, DeBoy RT, Kolonay JF, Sullivan SA, Zhou L, Davidsen TM, Wu M, Huston AL, Lewis M, Weaver B, Weidman JF, Khouri H, Utterback TR, Feldblyum TV, Fraser CM. The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci USA. 102:10913–10918Google Scholar
  29. Michiels C, Bartlett DH, Aertsen A (2008) High-pressure microbiology. ASM Press, Washington, DCGoogle Scholar
  30. Moore GE (1975) Progress in digital integrated electronics. Institute of electrical and electronics engineers international electronic devices meeting technology digest, pp 11–13Google Scholar
  31. Mozhaev VV, Heremans K, Frank J, Masson P, Balny C (1996) High pressure effects on protein structure and function. Proteins 24:81–91PubMedCrossRefGoogle Scholar
  32. Mueller F, Sommer I, Baranov P, Matadeen R, Stoldt M, Wohnert J, Gorlach M, van Heel M, Brimacombe R (2000) The 3D arrangement of the 23 S and 5 S rRNA in the Escherichia coli 50 S ribosomal subunit based on a cryo-electron microscopic reconstruction at 7.5 A resolution. J Mol Biol 298:35–59PubMedCrossRefGoogle Scholar
  33. Nagata T, Tamburini C, Arístegui J, Baltar F, Bochdansky A, Fonda-Umani S, Fukuda H, Gogou A, Hansell DA, Hansman RL, Herndl G, Panagiotopoulos C, Reinthaler T, Sohrin R, Verdugo P, Yamada N, Yamashita Y, Yokokawa T, Bartlett DH (2010) Emerging concepts on microbial processes in the bathypelagic ocean – ecology, biogeochemistry and genomics. Deep Sea Res II 57:1519–1536CrossRefGoogle Scholar
  34. Niven GW, Miles CA, Mackey BM (1999) The effects of hydrostatic pressure on ribosome conformation in Escherichia coli: and in vivo study using differential scanning calorimetry. Microbiology 145:419–25PubMedCrossRefGoogle Scholar
  35. Pham VD, Konstantinidis KT, Palden T, Delong EF (2008) Phylogenetic analyses of ribosomal DNA-containing bacterioplankton genome fragments from a 4000 m vertical profile in the North Pacific Subtropical Gyre. Environ Microbiol 10:2313–2330PubMedCrossRefGoogle Scholar
  36. Phizicky EM, Alfonzo JD (2010) Do all modifications benefit all tRNAs? FEBS Letters 584:265–271PubMedCrossRefGoogle Scholar
  37. Prieur D, Jebbar M, Bartlett D, Kato C, Oger P (2009) Piezophilic prokaryotes. In: Sebert E (ed) Comparative high pressure biology. Science Publishers, Enfield, New Hampshire, pp 281–318Google Scholar
  38. Riley M, Staley JT, Danchin A, Wang TZ, Brettin TS, Hauser LJ, Land ML, Thompson LS (2008) Genomics of an extreme psychrophile, Psychromonas ingrahamii. BMC Genomics 9:210Google Scholar
  39. Schuwirth BS, Borovinskaya MA, Hau CW, Zhang W, Vila-Sanjurjo A, Holton JM, Doudna Cate JH (2005) Structures of the bacterial ribosome at 3.5 A resolution. Science 310:827–834PubMedCrossRefGoogle Scholar
  40. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103:12115–1220PubMedCrossRefGoogle Scholar
  41. Somero GN (1990) Life at low volume change: hydrostatic pressure as a selective factor in the aquatic environment. Amer Zool 30:123–135Google Scholar
  42. Steitz TA, Moore PB (2003) RNA, the first macromolecular catalyst: the ribosome is a ribozyme. Trends Biochem Sci 28:411–418PubMedCrossRefGoogle Scholar
  43. Tamburini C, Garel M, Al Ali B, Merigot B, Kriwy P, Charriere B, Budillon G (2009) Distribution and activity of Bacteria and Archaea in the different water masses of the Tyrrhenian Sea. Deep Sea Res II 56:700–712CrossRefGoogle Scholar
  44. Thieringer HA, Jones PG, Inouye M (1998) Cold shock and adaptation. BioEssays 20:49–57PubMedCrossRefGoogle Scholar
  45. Vezzi A, Campanaro S, D’Angelo M, Simonato F, Vitulo N, Lauro FM, Cestaro A, Malacrida G, Simionati B, Cannata N, Romualdi C, Bartlett DH, Valle G (2005) Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 307:1459–61PubMedCrossRefGoogle Scholar
  46. Wang F, Wang J, Jian H, Zhang B, Li S, Wang F, Zeng X, Gao L, Bartlett DH, Yu J, Hu S, Xiao X (2008) Environmental adaptation: genomic analysis of the piezotolerant and psychrotolerant deep-sea iron reducing bacterium Shewanella piezotolerans WP3. PLoS One 3:e1937Google Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.Marine Biology Research DivisionCenter for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San DiegoLa JollaUSA

Personalised recommendations